Nonlinear Feature Space Transformation to Improve the Prediction of MCI to AD Conversion

  • Pin Zhang
  • Bibo Shi
  • Charles D. Smith
  • Jundong LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)


Accurate identification of patients with Mild Cognitive Impairment (MCI) at high risk for conversion to Alzheimer’s Disease (AD) offers an opportunity to target the disease process early. In this paper, we present a novel nonlinear feature transformation scheme to improve the prediction of MCI-AD conversion through semi-supervised learning. Utilizing Laplacian SVM (LapSVM) as a host classifier, the proposed method learns a smooth spatially varying transformation that makes the input data more linearly separable. Our approach has a broad applicability to boost the classification performance of many other semi-supervised learning solutions. Using baseline MR images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, we evaluate the effectiveness of the proposed semi-supervised framework and demonstrate the improvements over the state-of-the-art solutions within the same category.


  1. 1.
    An, L., Adeli, E., Liu, M., Zhang, J., Shen, D.: Semi-supervised hierarchical multimodal feature and sample selection for alzheimer’s disease diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 79–87. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_10 CrossRefGoogle Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Semi-supervised learning on riemannian manifolds. Mach. Learn. 56(1–3), 209–239 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data. arXiv preprint (2013). arXiv:1306.6709
  4. 4.
    Cheng, B., Liu, M., Shen, D., Li, Z., Zhang, D.: Multi-domain transfer learning for early diagnosis of alzheimer’s disease. Neuroinformatics 15(2), 115–132 (2017). CrossRefGoogle Scholar
  5. 5.
    Filipovych, R., Davatzikos, C., Initiative, A.D.N., et al.: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). Neuroimage 55(3), 1109–1119 (2011)CrossRefGoogle Scholar
  6. 6.
    Gu, Y., Feng, K.: Optimized laplacian svm with distance metric learning for hyperspectral image classification. AEORS 6(3), 1109–1117 (2013)Google Scholar
  7. 7.
    Huang, M., Yang, W., Feng, Q., Chen, W.: Longitudinal measurement and hierarchical classification framework for the prediction of alzheimer’s disease. Nature 7, 39880 (2017)Google Scholar
  8. 8.
    Liu, M., Zhang, J., Yap, P.T., Shen, D.: View-aligned hypergraph learning for alzheimer’s disease diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 123–134 (2017)CrossRefGoogle Scholar
  9. 9.
    Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A.D.N., et al.: Machine learning framework for early mri-based alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)CrossRefGoogle Scholar
  10. 10.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. TPAMI 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  11. 11.
    Shi, B., Chen, Y., Hobbs, K., Liu, J., Smith, C.D.: Nonlinear metric learning for alzheimer’s disease with integration of longitudinal neuroimaging features. In: BMVC (2015)Google Scholar
  12. 12.
    Shi, B., Chen, Y., Zhang, P., Smith, C.D., Liu, J.: Nonlinear feature transformation and deep fusion for alzheimer’s disease staging analysis. Pattern Recognit. 63, 487–498 (2017)CrossRefGoogle Scholar
  13. 13.
    Shi, B., Wang, Z., Liu, J.: Distance-informed metric learning for alzheimer’s disease staging. In: EMBC, pp. 934–937. IEEE (2014)Google Scholar
  14. 14.
    Suk, H.I., Lee, S.W., Shen, D.: Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017)CrossRefGoogle Scholar
  15. 15.
    Tong, T., Gray, K., Gao, Q., Chen, L., Rueckert, D.: Multi-modal classification of alzheimer’s disease using nonlinear graph fusion. Pattern Recognit. 63, 171–181 (2017)CrossRefGoogle Scholar
  16. 16.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning with application to clustering with side-information. In: NIPS, vol. 15, p. 12 (2002)Google Scholar
  17. 17.
    Ye, D.H., Pohl, K.M., Davatzikos, C.: Semi-supervised pattern classification: application to structural MRI of alzheimer’s disease. In: PRNI, pp. 1–4. IEEE (2011)Google Scholar
  18. 18.
    Zhang, C., Nie, F., Xiang, S.: A general kernelization framework for learning algorithms based on kernel PCA. Neurocomputing 73(4), 959–967 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhang, D., Shen, D.: Semi-supervised multimodal classification of alzheimer’s disease. In: ISBI, pp. 1628–1631. IEEE (2011)Google Scholar
  20. 20.
    Zhang, P., Shi, B., Smith, C.D., Liu, J.: Nonlinear metric learning for semi-supervised learning via coherent point drifting. In: ICMLA, pp. 314–319. IEEE (2016)Google Scholar
  21. 21.
    Zhu, Y., Zhu, X., Kim, M., Shen, D., Wu, G.: Early diagnosis of alzheimer’s disease by joint feature selection and classification on temporally structured support vector machine. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 264–272. Springer, Cham (2016). doi: 10.1007/978-3-319-46720-7_31 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pin Zhang
    • 1
  • Bibo Shi
    • 2
  • Charles D. Smith
    • 3
  • Jundong Liu
    • 1
    Email author
  1. 1.School of Electrical Engineering and Computer ScienceOhio UniversityAthensUSA
  2. 2.Department of RadiologyDuke UniversityDurhamUSA
  3. 3.Department of NeurologyUniversity of KentuckyLexingtonUSA

Personalised recommendations