Mobility Load Balancing over Intra-frequency Heterogeneous Networks Using Handover Adaptation

  • Hana JouiniEmail author
  • Mohamed Escheikh
  • Kamel Barkaoui
  • Tahar Ezzedine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10466)


Heterogeneous Networks (HetNet) present a straightforward and effective key factor for enhancing performance of next generation cellular networks. Since outdoor macro-cells are often likely to be affected by heavy loaded situations, a major issue in HetNet planning is to ensure that small-cells actually serve enough user equipments (UE). A scenario to consider is the traffic offloading from macro-cells to small-cells. The concept of Mobility Load Balancing (MLB) which had arisen with the 3rd Generation Partnership Project (3GPP) Release 8 [1, 2] to maximize the whole capacity of the system by optimally distributing traffic among neighbouring cells, may play a key role in such a situation. In this paper, we present a review of MLB algorithms proposed in the literature and designed for HetNets by classifying these algorithms based on the UE state (i.e. UE in idle or connected mode). In fact the adopted MLB technique is closely related to the mode of the UE (idle or connected mode). We also present a technique for MLB based on optimizing handover (HO) by adapting hysteresis values based on cells’ loads.


HetNet Mobility load balancing Connected mode Hysteresis Handover 


  1. 1.
    European Telecommunications Standards Institute: LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Architecture description. 3GPP TS 36.401 version 8.6.0 Release 8 (2009)Google Scholar
  2. 2.
    European Telecommunications Standards Institute: LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Architecture description. 3GPP TS 36.401 version 12.2.0 Release 12 (2015)Google Scholar
  3. 3.
    Hwang, I., Song, B., Soliman, S.S.: A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 51, 20–27 (2013)CrossRefGoogle Scholar
  4. 4.
    Mehmeti, F., Spyropoulos, T.: Performance analysis of mobile data offloading in heterogeneous networks. IEEE Trans. Mobile Comput. 16(2), 482–497 (2016)CrossRefGoogle Scholar
  5. 5.
    Ghosh, A., et al.: Heterogeneous cellular networks: from theory to practice. IEEE Commun. Mag. 50(6), 54–64 (2012)Google Scholar
  6. 6.
    Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, C.X., et al.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRefGoogle Scholar
  8. 8.
    Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K.K., Schober, R., Hanzo, L.: User association in 5G networks: a survey and an outlook. IEEE Commun. Surv. Tutorials 18(2), 1018–1044 (2016)CrossRefGoogle Scholar
  9. 9.
    Chinipardaz, M., Noorhosseini, M.: A study on cell association in heterogeneous networks with joint load balancing and interference management. Telecommun. Syst. 66(1), 1–20 (2017)Google Scholar
  10. 10.
    Kuo, W.H., Liao, W.: Utility-based resource allocation in wireless networks. IEEE Trans. Wireless Commun. 6(10), 3600–3606 (2007)Google Scholar
  11. 11.
    European Telecommunications Standards Institute: Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility enhancements in heterogeneous networks. 3GPP TS 36.839 Release 11 (2012)Google Scholar
  12. 12.
    Elayoubi, S.E., Altman, E., Haddad, M., Altman, Z.: A hybrid decision approach for the association problem in heterogeneous networks. In: 10th Proceedings IEEE INFOCOM, San Diego, CA, USA, pp. 1–5 (2010)Google Scholar
  13. 13.
    Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., Andrews, J.G.: User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wireless Commun. 12(6), 2706–2716 (2013)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Li, J., Lin, Z., Mao, G., Vucetic, B.: User association with unequal user priorities in heterogeneous cellular networks. IEEE Trans. Veh. Technol. 65(9), 7374–7388 (2016)CrossRefGoogle Scholar
  15. 15.
    Shen, K., Yu, W.: Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 32(6), 1100–1113 (2014)CrossRefGoogle Scholar
  16. 16.
    Ali, M.S., Coucheney, P., Coupechoux, M.: Load balancing in heterogeneous networks based on distributed learning in near-potential games. IEEE Trans. Wireless Commun. 15(7), 5046–5059 (2016)Google Scholar
  17. 17.
    Zhang, T., Xu, H., Liu, D., Beaulieu, N.C., Zhu, Y.: User association for energy-load tradeoffs in HetNets with renewable energy supply. IEEE Commun. Lett. 19(12), 2214–2217 (2015)CrossRefGoogle Scholar
  18. 18.
    Han, T., Ansari, N.: A traffic load balancing framework for software-defined radio access networks powered by hybrid energy sources. IEEE/ACM Trans. Networking (TON) 24(2), 1038–1051 (2016)CrossRefGoogle Scholar
  19. 19.
    Son, H., Lee, S., Kim, S.C., Shin, Y.S.: Soft load balancing over heterogeneous wireless networks. IEEE Trans. Veh. Technol. 57(4), 2632–2638 (2008)CrossRefGoogle Scholar
  20. 20.
    Vu, T.K., Bennis, M., Samarakoon, S., Debbah, M., Latva-aho, M.: Joint Load Balancing and Interference Mitigation in 5G Heterogeneous Networks. arXiv preprint arXiv:1611.04821 (2016)
  21. 21.
    Li, J., Bjorson, E., Svensson, T., Eriksson, T., Debbah, M.: Joint precoding and load balancing optimization for energy-efficient heterogeneous networks. IEEE Trans. Wireless Commun. 14(10), 5810–5822 (2015)CrossRefGoogle Scholar
  22. 22.
    Tseng, C.C., Wang, H.C., Ting, K.C., Wang, C.C., Kuo, F.C.: Fast game-based handoff mechanism with load balancing for LTE/LTE-A heterogeneous networks. J. Netw. Comput. Appl. 85, 106–115 (2017)CrossRefGoogle Scholar
  23. 23.
    Zhou, F., Feng, L., Yu, P., Li, W.: Energy-efficiency driven load balancing strategy in LTE-WiFi interworking heterogeneous networks. In: Wireless Communications and Networking Conference Workshops (WCNCW), 10th Proceedings of IEEE INFOCOM, New Orleans, LA, USA, pp. 276–281 (2015)Google Scholar
  24. 24.
    Siomina, I., Yuan, D.: Load balancing in heterogeneous LTE: range optimization via cell offset and load-coupling characterization. In: IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, pp. 1357–1361 (2012)Google Scholar
  25. 25.
    Lopez-Perez, D., Claussen, H.: Duty cycles and load balancing in HetNets with eICIC almost blank subframes. In: 24th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), London, UK, pp. 173–178 (2013)Google Scholar
  26. 26.
    Fotiadis, P., Polignano, M., Laselva, D., Vejlgaard, B., Mogensen, P., Irmer, R., Scully, N.: Multi-layer mobility load balancing in a heterogeneous LTE network. In: IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada, pp. 1–5 (2012)Google Scholar
  27. 27.
    European Telecommunications Standards Institute: LTE; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP). 3GPP TS 36.423 version 12.3.0 Release 12 (2014)Google Scholar
  28. 28.
    Jouini, H., Escheikh, M., Barkaoui, K., Ezzedine, T.: Mobility load balancing based adaptive handover in downlink LTE self-organizing networks. Int. J. Wireless Mobile Comput. (IJWMN) 8(4), 89–105 (2016)Google Scholar
  29. 29.
    European Telecommunications Standards Institute: Radio Resource Control (RRC); Protocol specification. 3GPP TS 36.331 version 11.5.0 Release 11 (2013)Google Scholar
  30. 30.
    Alcatel-Lucent, picoChip Designs and Vodafone: Simulation assumptions and parameters for FDD HeNB RF requirements (2009)Google Scholar
  31. 31.
    Network Simulator 3.
  32. 32.
    Singh, S., Dhillon, H.S., Andrews, J.G.: Offloading in heterogeneous networks: modeling, analysis, and design insights. IEEE Trans. Wireless Commun. 12(5), 2484–2497 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hana Jouini
    • 1
    • 2
    Email author
  • Mohamed Escheikh
    • 1
  • Kamel Barkaoui
    • 1
    • 2
  • Tahar Ezzedine
    • 1
  1. 1.Communications Systems Laboratory (SysCom), National Enginneering School of Tunis (ENIT)University of Tunis El Manar (UTM)Tunis Le BelvédèreTunisia
  2. 2.Conservatoire National des Arts et Métiers, Ecole SITI - Département Informatique Lab. Cedric VespaParis Cedex 03France

Personalised recommendations