Advertisement

Application of Generalized Stochastic Petri Nets to Performance Modeling of the RF Communication in Sensor Networks

  • Sedda HakmiEmail author
  • Ouiza Lekadir
  • Djamil Aïssani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10466)

Abstract

In this paper we model and analyse the radio frequency (RF) transmission in wireless sensor networks using Generalized Stochastic Petri Nets (GSPN). In our model two types of priority requests are considered. In the first type, high priority requests are queued and served according to FIFO discipline. In the second type (case of blocking) low priority requests join the orbit before retrying the request until they find the server free. We consider the preemptive priority to the requests. Indeed, in this study, we highlight the impact of the presence of priority requests on network performances via GSPN formalism. Firstly, we study the case where the high priority requests have non-preemptive priority over lower ones. While, in the second case, we apply the preemptive discipline to the high priority requests. Finally, some numerical examples are given to illustrate our analysis.

Keywords

Radio Frequency (RF) transmission Wireless sensor network Generalized Stochastic Petri Nets Modeling Performance evaluation Priority requests 

References

  1. 1.
    Artalejo, J.R.: A classified bibliography of research on retrial queues: progress in 1990–1999. Top 7, 187–211 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Artalejo, J.R.: Accessible bibliography on retrial queues: progress in 2000–2009. Math. Comput. Model. 51, 1071–1081 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bérczes, T., Sztrik, J., Orosz, P., Moyal, P., Limnios, N., Georgiadis, S.: Tool supported modeling of sensor communication networks by using finite-source priority retrial queues. Carpathian J. Electron. Comput. Eng. 5, 13–18 (2012)Google Scholar
  4. 4.
    Bérczes, T., Almási, B., Sztrik, J., Kuki, A.: Modeling the RF communication in sensor networks by using finite-source retrial queueing system. Trans. Autom. Control Comput. Sci. 58(72), 2–4 (2013). Scientific Bulletin of the Politehnica University of Timisoara, RomaniaGoogle Scholar
  5. 5.
    Choi, B.D., Park, K.K.: The M/G/1 retrial queue with Bernoulli schedule. Queueing Syst. 7, 219–227 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Choi, B.D., Choi, K.B., Lee, Y.W.: M/G/1 retrial queueing system with two types of calls and finite capacity. Queueing Syst. 19, 215–229 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Choi, B.D., Chang, Y.: Single server retrial queues with priority calls. Math. Comput. Model. 30(3–4), 7–32 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deng, J., Han, R., Mishra, S.: A performance evaluation of intrusion-tolerant routing in wireless sensor networks. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 349–364. Springer, Heidelberg (2003). doi: 10.1007/3-540-36978-3_23 CrossRefGoogle Scholar
  9. 9.
    Dimitriou, I.: Analysis of a priority retrial queue with dependent vacation scheme and application to power saving in wireless communication systems. Comput. J. 56(11), 1363–1380 (2012)CrossRefGoogle Scholar
  10. 10.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Falin, G.I.: A survey of retrial queues. Queueing Syst. 7(2), 127–167 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gharbi, N., Charabi, L.: Comparing random server and fastest free server disciplin. Int. J. Adv. Netw. Serv. 5(1–2), 102–115 (2012)Google Scholar
  13. 13.
    Gupta, G., Younis, M.: Performance evaluation of load-balanced clustering of wireless sensor networks. In: 10th International Conference on Telecommunication, vol. 2 (2003)Google Scholar
  14. 14.
    Hakmi, S., Lekadir, O., Aïssani, D.: A GSPN formalism to obtain service-time probability of finite source-queue with different customers. In: International Conference on Natural Science and Applied Mathematics, ICNSAM, Dubai (2016)Google Scholar
  15. 15.
    Ikhlef, L., Lekadir, O., Aïssani, D.: MRSPN analysis of semi-Markovian finite source retrial queues. Ann. OR 247, 141–167 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, F., Blätke, M.A., Heiner, M., Yang, M.: Modelling and simulating reaction diffusion systems using coloured Petri nets. Comput. Biol. Med. 53, 297–308 (2014)CrossRefGoogle Scholar
  17. 17.
    Marsan, M.A., Balbo, M.G., Conte, G.: Models of Multiprocessor Systems, vol. 11, p. 294. The MIT Press, Massachusetts (1986)Google Scholar
  18. 18.
    Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, New York (1995)zbMATHGoogle Scholar
  19. 19.
    Molloy, M.K.: On the integration of delay and throughput measures in processing models, Ph.D. Thesis. University of California, Los Angeles (1981)Google Scholar
  20. 20.
    Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. C–31, 913–917 (1982)CrossRefGoogle Scholar
  21. 21.
    Petri, C.A.: Kommunikation mit automaten, Ph.D. dissertation, Institut für Instrumentelle Mathematik, University of Bonn, West Germany, pp. 65–377 (1962)Google Scholar
  22. 22.
    Wüchner, P., Sztrik, J., Meer, H.: Modeling wireless sensor networks using finite-source retrial queues with unreliable orbit. In: Hummel, K.A., Hlavacs, H., Gansterer, W. (eds.) PERFORM 2010. LNCS, vol. 6821, pp. 73–86. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25575-5_7 CrossRefGoogle Scholar
  23. 23.
    Yang, T., Templeton, J.G.C.: A survey on retrial queues. Queueing Syst. 2(3), 201–233 (1987)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Research Unit LaMOS (Modeling and Optimization of Systems)Bejaia UniversityBéjaïaAlgeria

Personalised recommendations