On Solving Nominal Fixpoint Equations

  • Mauricio Ayala-RincónEmail author
  • Washington de Carvalho-Segundo
  • Maribel Fernández
  • Daniele Nantes-Sobrinho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10483)


In nominal syntax, variable binding is specified using atom-abstraction constructors, and alpha-equivalence is formalised using freshness constraints and atom swappings, which implement variable renamings. Composition of swappings gives rise to atom permutations. Algorithms to check equivalence, match and unify nominal terms have been extended to deal with terms where some operators are associative and/or commutative. In the case of nominal C-unification, problems are transformed into finite and complete families of fixpoint equations of the form Open image in new window , where \(\pi \) is a permutation. To generate nominal C-unifiers, a technique to obtain a sound and complete set of solutions for these equations is needed. In this work we show how complete sets of solutions for nominal fixpoint problems are built and discuss efficient techniques to generate solutions based on algebraic properties of permutations.


  1. 1.
    Aoto, T., Kikuchi, v: A rule-based procedure for equivariant nominal unification. In: Pre-proceeding of Higher-Order Rewriting (HOR), pp. 1–5 (2016)Google Scholar
  2. 2.
    Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016). doi: 10.1007/978-3-319-40229-1_12 Google Scholar
  3. 3.
    Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.: A formalisation of nominal equivalence with associative-commutative function symbols. ENTCS 332, 21–38 (2017). Post-proceeding of Eleventh Logical and Semantic Frameworks with Applications (LSFA)Google Scholar
  4. 4.
    Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.: Nominal C-Unification. Av (2017).
  5. 5.
    Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Nominal narrowing. In: Proceedings of 1st International Conference on Formal Structures for Computation and Deduction (FSCD), vol. 52 of LIPIcs, pp. 1–16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)Google Scholar
  6. 6.
    Ayala-Rincón, M., Fernández, M., Rocha-oliveira, A.C.: Completeness in PVS of a nominal unification algorithm. ENTCS 323, 57–74 (2016)MathSciNetGoogle Scholar
  7. 7.
    Baader, F., Nipkow, T.: Term Rewriting and All That. CUP, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cheney, J.: Equivariant unification. J. Autom. Reason. 45, 267–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of higher order expressions with recursive let. CoRR, abs/1608.03771 (2016)Google Scholar
  11. 11.
    Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2), 165–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Graduate Texts in Mathematics, vol. 203, 2nd edn. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Siekmann, J.: Unification of commutative terms. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 22–22. Springer, Heidelberg (1979). doi: 10.1007/3-540-09519-5_53 CrossRefGoogle Scholar
  14. 14.
    Urban, C.: Nominal unification revisited. In: Proceedings of International Workshop on Unification (UNIF), vol. 42 of EPTCS, pp. 1–11 (2010)Google Scholar
  15. 15.
    Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci. 323(1–3), 473497 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mauricio Ayala-Rincón
    • 1
    Email author
  • Washington de Carvalho-Segundo
    • 1
  • Maribel Fernández
    • 2
  • Daniele Nantes-Sobrinho
    • 1
  1. 1.Depts. de Matemática e Ciência da ComputaçãoUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations