An Efficient SMT Approach to Solve MRCPSP/max Instances with Tight Constraints on Resources

  • Miquel Bofill
  • Jordi Coll
  • Josep Suy
  • Mateu Villaret
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)


The Multi-Mode Resource-Constrained Project Scheduling Problem with Minimum and Maximum Time Lags (MRCPSP/max) is a generalization of the well known Resource-Constrained Project Scheduling Problem. Recently, it has been shown that the benchmark datasets typically used in the literature can be easily solved by relaxing some resource constraints, which in many cases are dummy. In this work we propose new datasets with tighter resource limitations. We tackle them with an SMT encoding, where resource constraints are expressed as specialized pseudo-Boolean constraints and then translated into SAT. We provide empirical evidence that this approach is state-of-the-art for instances highly constrained by resources.



Work supported by grants TIN2015-66293-R (MINECO/ FEDER, UE), MPCUdG2016/055 (UdG), and Ayudas para Contratos Predoctorales 2016 (grant number BES-2016-076867, funded by MINECO and co-funded by FSE). We thank the authors of [12, 17] for sharing with us their solvers.


  1. 1.
    Ansótegui, C., Bofill, M., Palahí, M., Suy, J., Villaret, M.: Satisfiability modulo theories: an efficient approach for the resource-constrained project scheduling problem. In: Proceedings of the Ninth Symposium on Abstraction, Reformulation, and Approximation (SARA), pp. 2–9. AAAI (2011)Google Scholar
  2. 2.
    Artigues, C., Demassey, S., Neron, E.: Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications. Wiley, Hoboken (2013)Google Scholar
  3. 3.
    Bofill, M., Coll, J., Suy, J., Villaret, M.: Solving the multi-mode resource-constrained project scheduling problem with SMT. In: 28th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 239–246. IEEE (2016)Google Scholar
  4. 4.
    Bofill, M., Coll, J., Suy, J., Villaret, M.: Compact MDDs for pseudo-Boolean constraints with at-most-one relations in resource-constrained scheduling problems. In: International Joint Conference on Artificial Intelligence (IJCAI) (2017, to appear)Google Scholar
  5. 5.
    Brucker, P., Drexl, A., Mhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Dutertre, B., de Moura, L.: The yices SMT solver. Technical report, Computer Science Laboratory, SRI International (2006).
  7. 7.
    Eén, N., Sorensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisfiability Boolean Model. Comput. 2, 1–26 (2006)MATHGoogle Scholar
  8. 8.
    Herroelen, W., Demeulemeester, E., Reyck, B.: A classification scheme for project scheduling. In: Weglarz, J. (ed.) Project Scheduling. International Series in Operations Research & Management Science, vol. 14, pp. 1–26. Springer, New York (1999). doi: 10.1007/978-1-4615-5533-9_1 CrossRefGoogle Scholar
  9. 9.
    Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J. Oper. Res. 96(1), 205–216 (1997)CrossRefMATHGoogle Scholar
  10. 10.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  11. 11.
    Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16, 93–108 (1969)CrossRefGoogle Scholar
  12. 12.
    Schnell, A., Hartl, R.F.: On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations. OR Spectr. 38(2), 283–303 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource constrained project scheduling problem with generalized precedences by lazy clause generation. CoRR abs/1009.0347 (2010).
  14. 14.
    Schwindt, C.: Generation of resource constrained project scheduling problems subject to temporal constraints. Inst. für Wirtschaftstheorie und Operations-Research (1998)Google Scholar
  15. 15.
    Sebastiani, R., Tomasi, S.: Optimization in SMT with \({\cal{LA}}(\mathbb{Q})\) cost functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 484–498. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31365-3_38 CrossRefGoogle Scholar
  16. 16.
    Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_31 CrossRefGoogle Scholar
  17. 17.
    Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Cham (2015). doi: 10.1007/978-3-319-18008-3_30 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miquel Bofill
    • 1
  • Jordi Coll
    • 1
  • Josep Suy
    • 1
  • Mateu Villaret
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations