Advertisement

Weight-Aware Core Extraction in SAT-Based MaxSAT Solving

  • Jeremias Berg
  • Matti Järvisalo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

Maximum satisfiability (MaxSAT) is today a competitive approach to tackling NP-hard optimization problems in a variety of AI and industrial domains. A great majority of the modern state-of-the-art MaxSAT solvers are core-guided, relying on a SAT solver to iteratively extract unsatisfiable cores of the soft clauses in the working formula and ruling out the found cores via adding cardinality constraints into the working formula until a solution is found. In this work we propose weight-aware core extraction (WCE) as a refinement to the current common approach of core-guided solvers. WCE integrates knowledge of soft clause weights into the core extraction process, and allows for delaying the addition of cardinality constraints into the working formula. We show that WCE noticeably improves in practice the performance of PMRES, one of the recent core-guided MaxSAT algorithms using soft cardinality constraints, and explain how the approach can be integrated into other core-guided algorithms.

References

  1. 1.
    Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press (2015)Google Scholar
  2. 2.
    Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in clasp. In: Proceedings of ICLP Technical Communications, LIPIcs, vol. 17, pp. 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  3. 3.
    Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02777-2_39 CrossRefGoogle Scholar
  4. 4.
    Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSat solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33558-7_9 CrossRefGoogle Scholar
  6. 6.
    Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Proceedings of IJCAI, pp. 283–289. AAAI Press (2015)Google Scholar
  7. 7.
    Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)CrossRefzbMATHGoogle Scholar
  8. 8.
    Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux upgradeability problems using Boolean optimization. In: Proceedings of LoCoCo. Electronic Proceedings in Theoretical Computer Science, vol. 29, pp. 11–22 (2010)Google Scholar
  9. 9.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT Evaluations. http://maxsat.ia.udl.cat/
  10. 10.
    Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_23 CrossRefGoogle Scholar
  11. 11.
    Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian networks via maximum satisfiability. In: Proceedings of AISTATS, JMLR Workshop and Conference Proceedings, vol. 33, pp. 86–95 (2014). JMLR.org
  12. 12.
    Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction sets. In: Proceedings of IJCAI, pp. 246–252. AAAI Press (2015)Google Scholar
  13. 13.
    Bunte, K., Järvisalo, M., Berg, J., Myllymäki, P., Peltonen, J., Kaski, S.: Optimal neighborhood preserving visualization by maximum satisfiability. In: Proceedings of AAAI, pp. 1694–1700. AAAI Press (2014)Google Scholar
  14. 14.
    Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.: Automated design debugging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1804–1817 (2010)CrossRefGoogle Scholar
  15. 15.
    Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSaT. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_13 CrossRefGoogle Scholar
  16. 16.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). doi: 10.1007/11814948_25 CrossRefGoogle Scholar
  17. 17.
    Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33558-7_67 CrossRefGoogle Scholar
  18. 18.
    Heras, F., Morgado, A., Marques-Silva, J.: Lower bounds and upper bounds for MaxSAT. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 402–407. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34413-8_35 CrossRefGoogle Scholar
  19. 19.
    Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: Proceedings of IJCAI, pp. 193–198. Professional Book Center (2005)Google Scholar
  20. 20.
    Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds in MaxSAT. Constraints 15(4), 456–484 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005). doi: 10.1007/11564751_31 CrossRefGoogle Scholar
  22. 22.
    Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing lower bounds for Max-SAT. In: Proceedings of AAAI, pp. 86–91. AAAI Press (2006)Google Scholar
  23. 23.
    Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in Max-SAT solving. In: Proceedings of AAAI, pp. 351–356. AAAI Press (2008)Google Scholar
  24. 24.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02777-2_45 CrossRefGoogle Scholar
  25. 25.
    Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis with maximum satisfiability. In: Proceedings of IJCAI, pp. 1966–1972. AAAI Press (2015)Google Scholar
  26. 26.
    Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. CoRR abs/0712.1097 (2007)Google Scholar
  28. 28.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_39 Google Scholar
  29. 29.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver’. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). doi: 10.1007/978-3-319-09284-3_33 Google Scholar
  30. 30.
    Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_41 Google Scholar
  31. 31.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of AAAI, pp. 2717–2723. AAAI Press (2014)Google Scholar
  32. 32.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_34 Google Scholar
  33. 33.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning. 2: Classical Papers on Computational Logic 1967–1970. Symbolic Computation, pp. 466–483. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  34. 34.
    Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum satisfiability and backbones. In: Proceedings of FMCAD, pp. 63–66. FMCAD Inc. (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations