Advertisement

CoverSize: A Global Constraint for Frequency-Based Itemset Mining

  • Pierre Schaus
  • John O. R. Aoga
  • Tias Guns
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

Constraint Programming is becoming competitive for solving certain data-mining problems largely due to the development of global constraints. We introduce the CoverSize constraint for itemset mining problems, a global constraint for counting and constraining the number of transactions covered by the itemset decision variables. We show the relation of this constraint to the well-known table constraint, and our filtering algorithm internally uses the reversible sparse bitset data structure recently proposed for filtering table. Furthermore, we expose the size of the cover as a variable, which opens up new modelling perspectives compared to an existing global constraint for (closed) frequent itemset mining. For example, one can constrain minimum frequency or compare the frequency of an itemset in different datasets as is done in discriminative itemset mining. We demonstrate experimentally on the frequent, closed and discriminative itemset mining problems that the CoverSize constraint with reversible sparse bitsets allows to outperform other CP approaches.

Notes

Acknowledgments

The research is supported by the FRIA-FNRS (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium) and FWO (Research Foundation – Flanders). We also thank Willard Zhan for his help with the reduction proof.

References

  1. 1.
    Aggarwal, C.C.: An introduction to frequent pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 1–17. Springer, Cham (2014). doi: 10.1007/978-3-319-07821-2_1 Google Scholar
  2. 2.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. Int. Conf. Manag. Data (SIGMOD) 22(2), 207–216 (1993)Google Scholar
  3. 3.
    Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS, vol. 9852, pp. 315–330. Springer, Cham (2016). doi: 10.1007/978-3-319-46227-1_20 CrossRefGoogle Scholar
  4. 4.
    Aoga, J.O., Guns, T., Schaus, P.: Mining time-constrained sequential patterns with constraint programming. Constraints 22, 1–23 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bessiere, C., Régin, J.C.: Arc consistency for general constraint networks: preliminary results. In: International Joint Conference on Artificial Intelligence (IJCAI) (1997)Google Scholar
  6. 6.
    Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 35–42, November 2004Google Scholar
  7. 7.
    Borgelt, C.: Efficient implementations of Apriori and Eclat. In: FIMI: Workshop on Frequent Itemset Mining Implementations (2003)Google Scholar
  8. 8.
    Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(6), 437–456 (2012)Google Scholar
  9. 9.
    Bringmann, B., Zimmermann, A.: Tree 2 – decision trees for tree structured data. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS, vol. 3721, pp. 46–58. Springer, Heidelberg (2005). doi: 10.1007/11564126_10 CrossRefGoogle Scholar
  10. 10.
    Bringmann, B., Zimmermann, A., Raedt, L., Nijssen, S.: Don’t be afraid of simpler patterns. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS, vol. 4213, pp. 55–66. Springer, Heidelberg (2006). doi: 10.1007/11871637_10 CrossRefGoogle Scholar
  11. 11.
    Cheng, H., Yan, X., Han, J., Philip, S.Y.: Direct discriminative pattern mining for effective classification. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 169–178. IEEE (2008)Google Scholar
  12. 12.
    Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 204–212 (2008)Google Scholar
  14. 14.
    Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C., Schaus, P.: Compact-table: efficiently filtering table constraints with reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_14 CrossRefGoogle Scholar
  15. 15.
    Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data Eng. 17(8), 1036–1050 (2005)CrossRefGoogle Scholar
  16. 16.
    Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P., Verscheure, O.: Direct mining of discriminative and essential frequent patterns via model-based search tree. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 230–238. ACM (2008)Google Scholar
  17. 17.
    Gecode Team: Gecode: generic constraint development environment (2006). http://www.gecode.org
  18. 18.
    Google: Google optimization tools (2015). https://developers.google.com/optimization/
  19. 19.
    Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using top-k SAT problem. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8190, pp. 403–418. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40994-3_26 CrossRefGoogle Scholar
  21. 21.
    Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a sat-based framework. Artif. Intell. 244, 30–47 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: PREFIX-PROJECTION global constraint for sequential pattern mining. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 226–243. Springer, Cham (2015). doi: 10.1007/978-3-319-23219-5_17 Google Scholar
  23. 23.
    Knuth, D.: The Art of Computer Programming: Combinatorial Algorithms, vol. 4. Addison-Wesley, Upper Saddle River (2015)Google Scholar
  24. 24.
    Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizumault, P.: A global constraint for closed frequent pattern mining. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_22 CrossRefGoogle Scholar
  25. 25.
    Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lhomme, O.: Quick shaving. In: Proceedings of the 20th National Conference on Artificial Intelligence, vol. 1. pp. 411–415. AAAI Press (2005)Google Scholar
  27. 27.
    Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In: Vianu, V., Gottlob, G. (eds.) Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 15–17 May 2000, Dallas, Texas, USA, pp. 226–236. ACM (2000)Google Scholar
  28. 28.
    Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for itemset mining. In: 2013 IEEE 13th International Conference on Data Mining Data Mining (ICDM), pp. 557–566. IEEE (2013)Google Scholar
  29. 29.
    Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305. Springer, Cham (2015). doi: 10.1007/978-3-319-18008-3_20 Google Scholar
  30. 30.
    Nijssen, S., Guns, T.: Integrating constraint programming and itemset mining. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6322, pp. 467–482. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15883-4_30 CrossRefGoogle Scholar
  31. 31.
    Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 647–656. ACM (2009)Google Scholar
  32. 32.
    Nijssen, S., Zimmermann, A.: Constraint-based pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 147–163. Springer, Cham (2014). doi: 10.1007/978-3-319-07821-2_7 Google Scholar
  33. 33.
    OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
  34. 34.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). doi: 10.1007/3-540-49257-7_25 CrossRefGoogle Scholar
  35. 35.
    Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_44 Google Scholar
  36. 36.
    Rácz, B.: nonordfp: an FP-growth variation without rebuilding the FP-tree. In: FIMI: Workshop on Frequent Itemset Mining Implementations (2004)Google Scholar
  37. 37.
    de Saint-Marcq, V.l.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain implementation. In: CP workshop on - Techniques foR Implementing Constraint programming Systems (TRICS), pp. 1–10 (2013)Google Scholar
  38. 38.
    Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the minizinc challenge. Constraints 15(3), 307–316 (2010)CrossRefzbMATHGoogle Scholar
  39. 39.
    Uno, T., Kiyomi, M., Arimura, H.: LCM Ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations (OSDM 2005), pp. 77–86. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.UCLouvain, ICTEAMLouvain-la-NeuveBelgium
  2. 2.UAC, ED-SDIAbomey-CalaviBenin
  3. 3.VUB BrusselsBrusselsBelgium
  4. 4.KU LeuvenLeuvenBelgium

Personalised recommendations