among Implied Constraints for Two Families of Time-Series Constraints

  • Ekaterina Arafailova
  • Nicolas Beldiceanu
  • Helmut Simonis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)


We consider, for an integer time series, two families of constraints restricting the max, and the sum, respectively, of the surfaces of the elements of the sub-series corresponding to occurrences of some pattern. In recent work these families were identified as the most difficult to solve compared to all other time-series constraints. For all patterns of the time-series constraints catalogue, we provide a unique per family parameterised \(\textsc {among}\) implied constraint that can be imposed on any prefix/suffix of a time-series. Experiments show that it reduces both the number of backtracks/time spent by up to 4/3 orders of magnitude.


  1. 1.
    Akşin, O.Z., Armony, M., Mehrotra, V.: The modern call center: a multi-disciplinary perspective on operations management research. Prod. Oper. Manag. 16(6), 665–688 (2007)Google Scholar
  2. 2.
    Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and cost register automata. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013, pp. 13–22. IEEE Computer Society (2013)Google Scholar
  3. 3.
    Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 15–40. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49498-1_2 CrossRefGoogle Scholar
  4. 4.
    Arafailova, E., Beldiceanu, N., Carlsson, M., Flener, P., Francisco Rodríguez, M.A., Pearson, J., Simonis, H.: Systematic derivation of bounds and glue constraints for time-series constraints. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 13–29. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_2 CrossRefGoogle Scholar
  5. 5.
    Arafailova, E., Beldiceanu, N., Douence, R., Carlsson, M., Flener, P., Rodríguez, M.A.F., Pearson, J., Simonis, H.: Global constraint catalog, volume ii, time-series constraints. CoRR, abs/1609.08925 (2016)Google Scholar
  6. 6.
    Arafailova, E., Beldiceanu, N., Douence, R., Flener, P., Francisco Rodríguez, M.A., Pearson, J., Simonis, H.: Time-series constraints: improvements and application in CP and MIP contexts. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 18–34. Springer, Cham (2016). doi: 10.1007/978-3-319-33954-2_2 Google Scholar
  7. 7.
    Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for describing and synthesising structural time-series constraints. Constraints 21(1), 22–40 (2016). Journal Fast Track of CP 2015. Summary. LNCS, vol. 9255, p. 723. Springer, Berlin (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30201-8_11 CrossRefGoogle Scholar
  9. 9.
    Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Comput. Model. 20(12), 97–123 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating solutions for the EDF unit commitment problem with the ModelSeeker. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40627-0_54 CrossRefGoogle Scholar
  11. 11.
    Bessière, C., Coletta, R., Hébrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C.-G., Walsh, T.: Constraint Acquisition via Partial Queries. In: IJCAI, Beijing, China, p. 7, June 2013Google Scholar
  12. 12.
    Bessière, C., Coletta, R., Petit, T.: Learning implied global constraints. In: IJCAI 2007, Hyderabad, India, pp. 50–55 (2007)Google Scholar
  13. 13.
    Bessière, C., Hébrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Among, common and disjoint constraints. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 29–43. Springer, Heidelberg (2006). doi: 10.1007/11754602_3 CrossRefGoogle Scholar
  14. 14.
    Colcombet, T., Daviaud, L.: Approximate comparison of functions computed by distance automata. Theory Comput. Syst. 58(4), 579–613 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column generation approach. Constraints 11(4), 315–333 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Eeckhout, L., De Bosschere, K., Neefs, H.: Performance analysis through synthetic trace generation. In: 2000 ACM/IEEE International Symposium Performance Analysis Systems Software, pp. 1–6 (2000)Google Scholar
  17. 17.
    Kegel, L., Hahmann, M., Lehner, W.: Template-based time series generation with loom. In: EDBT/ICDT Workshops 2016, Bordeaux, France (2016)Google Scholar
  18. 18.
    Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30201-8_36 CrossRefGoogle Scholar
  19. 19.
    Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning parameters for the sequence constraint from solutions. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 405–420. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_26 CrossRefGoogle Scholar
  20. 20.
    Marcel Paul Schützenberger: On the definition of a family of automata. Inf. Control 4, 245–270 (1961)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ekaterina Arafailova
    • 1
  • Nicolas Beldiceanu
    • 1
  • Helmut Simonis
    • 2
  1. 1.TASC (LS2N), IMT AtlantiqueNantesFrance
  2. 2.Insight Centre for Data AnalyticsUniversity College CorkCorkIreland

Personalised recommendations