NightSplitter: A Scheduling Tool to Optimize (Sub)group Activities

  • Tong Liu
  • Roberto Di Cosmo
  • Maurizio Gabbrielli
  • Jacopo Mauro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)

Abstract

Humans are social animals and usually organize activities in groups. However, they are often willing to split temporarily a bigger group in subgroups to enhance their preferences. In this work we present NightSplitter, an on-line tool that is able to plan movie and dinner activities for a group of users, possibly splitting them in subgroups to optimally satisfy their preferences. We first model and prove that this problem is NP-complete. We then use Constraint Programming (CP) or alternatively Simulated Annealing (SA) to solve it. Empirical results show the feasibility of the approach even for big cities where hundreds of users can select among hundreds of movies and thousand of restaurants.

References

  1. 1.
    Aarts, E.H., Korst, J.H.: Simulated annealing. ISSUES 1, 16 (1988)Google Scholar
  2. 2.
    AlloCiné (2016). http://www.allocine.fr
  3. 3.
    Amer-Yahia, S., Roy, S.B., Chawlat, A., Das, G., Yu, C.: Group recommendation: semantics and efficiency. Proc. VLDB Endow. 2(1), 754–765 (2009)CrossRefGoogle Scholar
  4. 4.
    Basu Roy, S., Lakshmanan, L.V., Liu, R.: From group recommendations to group formation. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1603–1616. ACM (2015)Google Scholar
  5. 5.
    Boratto, L., Carta, S.: State-of-the-art in group recommendation and new approaches for automatic identification of groups. In: Soro, A., Vargiu, E., Armano, G., Paddeu, G. (eds.) Information Retrieval and Mining in Distributed Environments, vol. 324, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16089-9_1 CrossRefGoogle Scholar
  6. 6.
    Chu, G., de la Banda, M.G., Mears, C., Stuckey, P.J.: Symmetries and lazy clause generation. In: Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP 2010) Doctoral Programme, pp. 43–48 (2010)Google Scholar
  7. 7.
    Di Bitonto, P., Di Tria, F., Laterza, M., Roselli, T., Rossano, V., Tangorra, F.: A model for generating tourist itineraries. In: 2010 10th International Conference on Intelligent Systems Design and Applications, pp. 971–976. IEEE (2010)Google Scholar
  8. 8.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79228-4_1 CrossRefGoogle Scholar
  9. 9.
    Garcia, I., Sebastia, L., Onaindia, E.: On the design of individual and group recommender systems for tourism. Expert Syst. Appl. 38(6), 7683–7692 (2011)CrossRefGoogle Scholar
  10. 10.
    Gauvin, E.: Allocine helper (2016). https://github.com/etienne-gauvin/api-allocine-helper
  11. 11.
    Google: Google or-tools (2016). https://developers.google.com/optimization/
  12. 12.
    Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2016)Google Scholar
  13. 13.
    Ivrii, A., Ryvchin, V., Strichman, O.: Mining backbone literals in incremental SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 88–103. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4_8 CrossRefGoogle Scholar
  14. 14.
    Jacopo Mauro, T.L.: Minizinc model (2017). http://cs.unibo.it/t.liu/nightsplitter/mzn.html
  15. 15.
    Khoshkangini, R., Pini, M.S., Rossi, F.: A self-adaptive context-aware group recommender system. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS, vol. 10037, pp. 250–265. Springer, Cham (2016). doi:10.1007/978-3-319-49130-1_19 CrossRefGoogle Scholar
  16. 16.
    Kompan, M., Bielikova, M.: Group recommendations: survey and perspectives. Comput. Inform. 33(2), 446–476 (2014)Google Scholar
  17. 17.
    Le Berre, D., Marquis, P., Roussel, S.: Planning personalised museum visits. In: ICAPS (2013)Google Scholar
  18. 18.
    Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Towards next generation touring: personalized group tours (2016)Google Scholar
  19. 19.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Masthoff, J.: Group recommender systems: combining individual models. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 677–702. Springer, Heidelberg (2011). doi:10.1007/978-0-387-85820-3_21 CrossRefGoogle Scholar
  21. 21.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_38 CrossRefGoogle Scholar
  22. 22.
    Perry, M.: Python module for simulated annealing (2017). https://github.com/perrygeo/simanneal
  23. 23.
    Preston, C.C., Colman, A.M.: Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta psychol. 104(1), 1–15 (2000)CrossRefGoogle Scholar
  24. 24.
    Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  25. 25.
    Sebastia, L., Garcia, I., Onaindia, E., Guzman, C.: E-Tourism: a tourist recommendation and planning application. Int. J. Artif. Intell. Tools 18(5), 717–738 (2009). http://dx.doi.org/10.1142/S0218213009000378 CrossRefGoogle Scholar
  26. 26.
    Smith, B.M.: Modelling for constraint programming. In: Lecture Notes for the First International Summer School on Constraint Programming (2005)Google Scholar
  27. 27.
    Minizinc Team: Minizinc challenge 2016 (2016). http://www.minizinc.org/challenge2016/challenge.html
  28. 28.
    Minizinc Team: Minizinc challenge 2017 (2017). http://www.minizinc.org/challenge2017/challenge.html
  29. 29.
    Liu, T., Mauro, J., Di Cosmo, R., Gabbrielli, M.: Nightsplitter (2017). http://cs.unibo.it/t.liu/nightsplitter
  30. 30.
    TripAdvisor (2016). https://www.tripadvisor.com
  31. 31.
    Yelp: Yelp dataset challenge (2016). http://yelp.com/dataset_challenge/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tong Liu
    • 1
  • Roberto Di Cosmo
    • 2
  • Maurizio Gabbrielli
    • 1
  • Jacopo Mauro
    • 3
  1. 1.DISIUniversity of BolognaBolognaItaly
  2. 2.INRIA and University Paris DiderotParisFrance
  3. 3.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations