MDDs: Sampling and Probability Constraints

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10416)


We propose to combine two successful techniques of Artificial Intelligence: sampling and Multi-valued Decision Diagrams (MDDs). Sampling, and notably Markov sampling, is often used to generate data resembling to a corpus. However, this generation has usually to respect some additional constraints, for instance to avoid plagiarism or to respect some rules of the application domain. We propose to represent the corpus dependencies and these side constraints by an MDD and to develop some algorithms for sampling the solutions of an MDD while respecting some probabilities or a Markov chain. In that way, we obtain a generic method which avoids the development of ad-hoc algorithms for each application as it is currently the case. In addition, we introduce new constraints for controlling the probabilities of the solutions that are sampled. We experiments our method on a real life application: the geomodeling of a petroleum reservoir, and on the generation of French alexandrines. The obtained results show the advantage and the efficiency of our approach.



This research is conducted within the Flow Machines project which received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 291156. We would like to thank F. Pachet and P. Roy, who gave us the idea of this article.


  1. 1.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74970-7_11 CrossRefGoogle Scholar
  2. 2.
    Barbieri, G., Pachet, F., Roy, P., Esposti, M.D.: Markov constraints for generating lyrics with style. In: ECAI 2012–20th European Conference on Artificial Intelligence, pp. 115–120 (2012)Google Scholar
  3. 3.
    Bergman, D., Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21311-3_5 CrossRefGoogle Scholar
  4. 4.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)CrossRefMATHGoogle Scholar
  5. 5.
    Cheng, K.C.K., Yap, R.H.C.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column generation approach. Constraints 11(4), 315–333 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brooks, F., Hopkings, A., Neumann, P., Wright, W.: An experiment in musical composition. 3(6), 175–182 (1957)Google Scholar
  8. 8.
    Gange, G., Stuckey, P.J., Hentenryck, P.: Explaining propagators for edge-valued decision diagrams. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 340–355. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40627-0_28 CrossRefGoogle Scholar
  9. 9.
    Hadzic, T., Hooker, J.N., ÓSullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85958-1_30
  10. 10.
    Hoda, S., Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15396-9_23 CrossRefGoogle Scholar
  11. 11.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing. Pearson, London (2014)Google Scholar
  12. 12.
    Morin, M., Quimper, C.-G.: The Markov transition constraint. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 405–421. Springer, Cham (2014). doi: 10.1007/978-3-319-07046-9_29 CrossRefGoogle Scholar
  13. 13.
    Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Generation. Springer, Heidelberg (2009)Google Scholar
  14. 14.
    Pachet, F., Roy, P.: Markov constraints: steerable generation of Markov sequences. Constraints 16(2), 148–172 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pachet, F., Roy, P., Barbieri, G.: Finite-length Markov processes with constraints. IJCAI 2011, 635–642 (2011)Google Scholar
  16. 16.
    Papadopoulos, A., Roy, P., Pachet, F.: Avoiding plagiarism in Markov sequence generation. In: Proceeding of the Twenty-Eight AAAI Conference on Artificial Intelligence, pp. 2731–2737 (2014)Google Scholar
  17. 17.
    Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for regular and Markov constraints with belief propagation. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 341–350. Springer, Cham (2015). doi: 10.1007/978-3-319-23219-5_24 Google Scholar
  18. 18.
    Papadopoulos, A., Roy, P., Régin, J.-C., Pachet, F.: Generating all possible palindromes from Ngram corpora. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, 25–31 July 2015, Buenos Aires, Argentina, pp. 2489–2495 (2015)Google Scholar
  19. 19.
    Pennington, W.D.: Reservoir geophysics 66(1) (2001)Google Scholar
  20. 20.
    Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: ÓSullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_44 Google Scholar
  21. 21.
    Perez, G., Régin, J.-C.: Efficient operations on MDDs for building constraint programming models. In: International Joint Conference on Artificial Intelligence, IJCAI 2015, Argentina, pp. 374–380 (2015)Google Scholar
  22. 22.
    Perez, G., Régin, J.-C.: Soft and cost MDD propagators. In: The Thirty-First AAAI Conference on Artificial Intelligence AAAI 2017 (2017)Google Scholar
  23. 23.
    Roy, P., Perez, G., Régin, J.-C., Papadopoulos, A., Pachet, F., Marchini, M.: Enforcing structure on temporal sequences: the Allen constraint. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 786–801. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_49 CrossRefGoogle Scholar
  24. 24.
    Roy, P., Pachet, F.: Enforcing meter in finite-length Markov sequences. In: AAAI 2013 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Nice-Sophia Antipolis, I3S UMR 7271, CNRSSophia AntipolisFrance

Personalised recommendations