Peptides as Bio-inspired Molecular Electronic Materials

  • John HorsleyEmail author
  • Jingxian Yu
  • Yuan Qi Yeoh
  • Andrew Abell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1030)


Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.


Peptides Electron transfer Bio-inspired Molecular electronics Electronic materials Electrochemical methods 



This work is supported by the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP). The authors also gratefully acknowledge the assistance of the Australian National Fabrication Facility (ANFF).


  1. Abell AD, Alexander NA, Aitken SG, Chen H, Coxon JM, Jones MA, McNabb SB, Muscroft-Taylor A (2009a) Synthesis of macrocyclic beta-strand templates by ring closing metathesis. J Org Chem 74(11):4354–4356PubMedCrossRefGoogle Scholar
  2. Abell AD, Jones MA, Coxon JM, Morton JD, Aitken SG, McNabb SB, Lee HYY, Mehrtens JM, Alexander NA, Stuart BG, Neffe AT, Bickerstaff R (2009b) Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew Chem Int Ed 48(8):1455–1458CrossRefGoogle Scholar
  3. Amdursky N (2013) Enhanced solid-state electron transport via tryptophan containing peptide networks. Phys Chem Chem Phys 15(32):13479–13482PubMedCrossRefGoogle Scholar
  4. Angell YL, Burgess K (2007) Peptidomimetics via copper-catalyzed azide-alkyne cycloadditions. Chem Soc Rev 36(10):1674–1689PubMedCrossRefGoogle Scholar
  5. Antonello S, Formaggio F, Moretto A, Toniolo C, Maran F (2003) Anomalous distance dependence of electron transfer across peptide bridges. J Am Chem Soc 125(10):2874PubMedCrossRefGoogle Scholar
  6. Arikuma Y, Takeda K, Morita T, Ohmae M, Kimura S (2009) Linker effects on monolayer formation and long-range electron transfer in helical peptide monolayers. J Phys Chem B 113(18):6256PubMedCrossRefGoogle Scholar
  7. Arikuma Y, Nakayama H, Morita T, Kimura S (2010) Electron hopping over 100 angstrom along an alpha helix. Angew Chem Int Ed 49(10):1800CrossRefGoogle Scholar
  8. Arikuma Y, Nakayama H, Morita T, Kimura S (2011) Ultra-long-range electron transfer through a self-assembled monolayer on gold composed of 120-angstrom-long alpha-helices. Langmuir 27(4):1530PubMedCrossRefGoogle Scholar
  9. Arrondo JLR, Goñi FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72(4):367–405PubMedCrossRefGoogle Scholar
  10. Aubry S (2007) A nonadiabatic theory for electron transfer and application to ultrafast catalytic reactions. J Phys Condens Matter 19:255204CrossRefGoogle Scholar
  11. Avellini T, Li H, Coskun A, Barin G, Trabolsi A, Basuray AN, Dey SK, Credi A, Silvi S, Stoddart JF, Venturi M (2012) Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. Angew Chem Int Ed 51(7):1611–1615CrossRefGoogle Scholar
  12. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283CrossRefGoogle Scholar
  13. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  14. Beierle JM, Horne WS, van Maarseveen JH, Waser B, Reubi JC, Ghadiri MR (2009) Conformationally homogeneous heterocyclic pseudotetrapeptides as three-dimensional scaffolds for rational drug design: receptor-selective somatostatin analogues. Angew Chem Int Ed 48(26):4725–4729CrossRefGoogle Scholar
  15. Beiszinger M, Sticht H, Sutter M, Ejchart A, Haehnel W, Rosch P (1998) Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus. EMBO J 17(1):27–36CrossRefGoogle Scholar
  16. Bendall DS (1996) Protein electron transfer. BIOS Scientific Publishers, OxfordGoogle Scholar
  17. Benesch C, Rode MF, Cizek M, Haertle R, Rubio-Pons O, Thoss M, Sobolewski AL (2009) Switching the conductance of a single molecule by photoinduced hydrogen transfer. J Phys Chem C 113(24):10315CrossRefGoogle Scholar
  18. Biron Z, Khare S, Samson AO, Hayek Y, Naider F, Anglister J (2002) A monomeric 3(10)-helix is formed in water by a 13-residue peptide representing the neutralizing determinant of HIV-1 on gp41. Biochemist 41(42):12687–12696CrossRefGoogle Scholar
  19. Boal AK, Guryanov I, Moretto A, Crisma M, Lanni EL, Toniolo C, Grubbs RH, O’Leary DJ (2007) Facile and E-selective intramolecular ring-closing metathesis reactions in 3(10)-helical peptides: a 3D structural study. J Am Chem Soc 129(22):6986–6987PubMedCrossRefGoogle Scholar
  20. Bollinger JM Jr (2008) Biochemistry – electron relay in proteins. Science 320(5884):1730–1731PubMedCrossRefGoogle Scholar
  21. Burton NA, Harrison MJ, Hart JC, Hillier IH, Sheppard DW (1998) Prediction of the mechanisms of enzyme-catalysed reactions using hybrid quantum mechanical molecular mechanical methods. Faraday Discuss 110:463–475CrossRefGoogle Scholar
  22. Chaudhry BR, Wilton-Ely J, Tabor AB, Caruana DJ (2010) Effect of peptide orientation on electron transfer. Phys Chem Chem Phys 12(34):9996PubMedCrossRefGoogle Scholar
  23. Chen J, Nikolovska-Coleska Z, Yang C-Y, Gomez C, Gao W, Krajewski K, Jiang S, Roller P, Wang S (2007) Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via ‘click chemistry’. Bioorg Med Chem Lett 17(14):3939–3942PubMedCrossRefGoogle Scholar
  24. Chen X, Zhang L, Zhang L, Wang J, Liu H, Bu Y (2009) Proton-regulated electron transfers from tyrosine to tryptophan in proteins: through-bond mechanism versus long-range hopping mechanism. J Phys Chem B 113(52):16681–16688PubMedCrossRefGoogle Scholar
  25. Chen Y-S, Hong M-Y, Huang GS (2012) A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7(3):197–203PubMedCrossRefGoogle Scholar
  26. Chouhan G, James K (2011) CuAAC macrocyclization: high intramolecular selectivity through the use of copper–tris(triazole) ligand complexes. Org Lett 13(10):2754–2757PubMedCrossRefGoogle Scholar
  27. Cordes M, Giese B (2009) Electron transfer in peptides and proteins. Chem Soc Rev 38(4):892–901PubMedCrossRefGoogle Scholar
  28. Cordes M, Kottgen A, Jasper C, Jacques O, Boudebous H, Giese B (2008) Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via “stepping stones”. Angew Chem Int Ed 47(18):3461–3463CrossRefGoogle Scholar
  29. Darwish N, Diez-Perez I, Guo S, Tao N, Gooding JJ, Paddon-Row MN (2012) Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J Phys Chem C 116(39):21093–21097CrossRefGoogle Scholar
  30. de Araujo AD, Hoang HN, Kok WM, Diness F, Gupta P, Hill TA, Driver RW, Price DA, Liras S, Fairlie DP (2014) Comparative alpha-helicity of cyclic pentapeptides in water. Angew Chem Int Ed 53(27):6965–6969CrossRefGoogle Scholar
  31. Ding W, Negre CFA, Palma JL, Durrell AC, Allen LJ, Young KJ, Milot RL, Schmuttenmaer CA, Brudvig GW, Crabtree RH, Batista VS (2014) Linker rectifiers for covalent attachment of transition metal catalysts to metal-oxide surfaces. ChemPhysChem 15(6):1138–1147PubMedCrossRefGoogle Scholar
  32. Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery [mdash] an underexploited structural class. Nat Rev Drug Disc 7(7):608–624CrossRefGoogle Scholar
  33. Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254(15-16):1769–1802PubMedPubMedCentralCrossRefGoogle Scholar
  34. Emanuelsson R, Löfås H, Wallner A, Nauroozi D, Baumgartner J, Marschner C, Ahuja R, Ott S, Grigoriev A, Ottosson H (2014) Configuration and conformation-dependent electronic structure variations in 1,4-disubstituted cyclohexanes enabled by a carbon-to-silicon exchange. Chem Eur J 20(30):9304–9311PubMedCrossRefGoogle Scholar
  35. Galka MM, Kraatz HB (2002) Electron transfer studies on self-assembled monolayers of helical ferrocenoyl-oligoproline-cystamine bound to gold. ChemPhysChem 3(4):356–359PubMedCrossRefGoogle Scholar
  36. Galoppini E, Fox MA (1996) Effect of the electric field generated by the helix dipole on photoinduced intramolecular electron transfer in dichromophoric alpha-helical peptides. J Am Chem Soc 118(9):2299CrossRefGoogle Scholar
  37. Gao J, Mueller P, Wang M, Eckhardt S, Lauz M, Fromm KM, Giese B (2011) Electron transfer in peptides: the influence of charged amino acids. Angew Chem Int Ed 50(8):1926–1930CrossRefGoogle Scholar
  38. Gatto E, Porchetta A, Scarselli M, De Crescenzi M, Formaggio F, Toniolo C, Venanzi M (2012) Playing with peptides: how to build a supramolecular peptide nanostructure by exploiting helix center dot center dot center dot helix macrodipole interactions. Langmuir 28(5):2817–2826PubMedCrossRefGoogle Scholar
  39. Giese B, Graber M, Cordes M (2008) Electron transfer in peptides and proteins. Curr Opin Chem Biol 12(6):755–759PubMedCrossRefGoogle Scholar
  40. Giese B, Wang M, Gao J, Stoltz M, Müller P, Graber M (2009) Electron relay race in peptides. J Org Chem 74(10):3621–3625PubMedCrossRefGoogle Scholar
  41. Gooding JJ, Wibowo R, Liu YW, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125(30):9006–9007PubMedCrossRefGoogle Scholar
  42. Han B, Chen X, Zhao J, Bu Y (2012) A peptide loop and an alpha-helix N-terminal serving as alternative electron hopping relays in proteins. Phys Chem Chem Phys 14(45):15849–15859PubMedCrossRefGoogle Scholar
  43. Haris PI, Chapman D (1995) The conformational analysis of peptides using fourier transform IR spectroscopy. Biopolymers 37(4):251–263PubMedCrossRefGoogle Scholar
  44. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, LondonGoogle Scholar
  45. Hilinski GJ, Kim Y-W, Hong J, Kutchukian PS, Crenshaw CM, Berkovitch SS, Chang A, Ham S, Verdine GL (2014) Stitched α-helical peptides via bis ring-closing metathesis. J Am Chem Soc 136(35):12314–12322PubMedCrossRefGoogle Scholar
  46. Holub JM, Kirshenbaum K (2010) Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition. Chem Soc Rev 39(4):1325–1337PubMedCrossRefGoogle Scholar
  47. Holub JM, Jang H, Kirshenbaum K (2007) Fit to be tied: conformation-directed macrocyclization of peptoid foldamers. Org Lett 9(17):3275–3278PubMedCrossRefGoogle Scholar
  48. Horsley JR, Yu J, Moore KE, Shapter JG, Abell AD (2014) Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires. J Am Chem Soc 136:12479–12488PubMedPubMedCentralCrossRefGoogle Scholar
  49. Horsley JR, Yu J, Abell AD (2015) The correlation of electrochemical measurements and molecular junction conductance simulations in β-strand peptides. Chem Eur J 21:5926–5933PubMedCrossRefGoogle Scholar
  50. Huisgen R (1963) 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598CrossRefGoogle Scholar
  51. Ingale S, Dawson PE (2011) On resin side-chain cyclization of complex peptides using CuAAC. Org Lett 13(11):2822–2825PubMedCrossRefGoogle Scholar
  52. Jacobsen O, Maekawa H, Ge NH, Gorbitz CH, Rongved P, Ottersen OP, Amiry-Moghaddam M, Klaveness J (2011) Stapling of a 3(10)-helix with click chemistry. J Org Chem 76(5):1228PubMedCrossRefGoogle Scholar
  53. Kai M, Takeda K, Morita T, Kimura S (2008) Distance dependence of long-range electron transfer through helical peptides. J Pept Sci 14(2):192–202PubMedCrossRefGoogle Scholar
  54. Kapoerchan VV, Wiesner M, Overhand M, van der Marel GA, Koning F, Overkleeft HS (2008) Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg Med Chem 16(4):2053–2062PubMedCrossRefGoogle Scholar
  55. Kirby DA, Britton KT, Aubert ML, Rivier JE (1997) Identification of high-potency neuropeptide Y analogues through systematic lactamization†. J Med Chem 40(2):210–215PubMedCrossRefGoogle Scholar
  56. Lakhani A, Roy A, De Poli M, Nakaema M, Formaggio F, Toniolo C, Keiderling TA (2011) Experimental and theoretical spectroscopic study of 310-helical peptides using isotopic labeling to evaluate vibrational coupling. J Phys Chem B 115(19):6252–6264PubMedCrossRefGoogle Scholar
  57. Langen R, Chang IJ, Germanas JP, Richards JH, Winkler JR, Gray HB (1995) Electron-tunneling in proteins - coupling through a bta-strand. Science 268(5218):1733–1735PubMedCrossRefGoogle Scholar
  58. Lauz M, Eckhardt S, Fromm KM, Giese B (2012) The influence of dipole moments on the mechanism of electron transfer through helical peptides. Phys Chem Chem Phys 14(40):13785–13788PubMedCrossRefGoogle Scholar
  59. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263Google Scholar
  60. Long YT, Abu-Rhayem E, Kraatz HB (2005) Peptide electron transfer: more questions than answers. Chem Eur J 11(18):5186PubMedCrossRefGoogle Scholar
  61. Looper RE, Pizzirani D, Schreiber SL (2006) Macrocycloadditions leading to conformationally restricted small molecules. Org Lett 8(10):2063–2066PubMedCrossRefGoogle Scholar
  62. Lopez MS, Supuran AJ, Poulsen CT, Poulsen SA (2010) Carbonic anhydrase inhibitors developed through ‘click tailing’. Curr Pharm Des 16:3277–3287PubMedCrossRefGoogle Scholar
  63. Loughlin WA, Tyndall JDA, Glenn MP, Fairlie DP (2004) Beta-strand mimetics. Chem Rev 104(12):6085–6118PubMedCrossRefGoogle Scholar
  64. Lukacs A, Eker APM, Byrdin M, Brettel K, Vos MH (2008) Electron hopping through the 15 Å triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. J Am Chem Soc 130(44):14394–14395PubMedCrossRefGoogle Scholar
  65. Lundquist JT, Pelletier JC (2002) A new tri-orthogonal strategy for peptide cyclization. Org Lett 4(19):3219–3221PubMedCrossRefGoogle Scholar
  66. Lung F-DT, Collins N, Stropova D, Davis P, Yamamura HI, Porreca F, Hruby VJ (1996) Design, synthesis, and biological activities of cyclic lactam peptide analogues of dynorphin A(1−11)-NH21. J Med Chem 39(5):1136–1141PubMedCrossRefGoogle Scholar
  67. Maeda H, Sakamoto R, Nishihara H (2013) Metal complex oligomer and polymer wires on electrodes: tactical constructions and versatile functionalities. Polymer 54(17):4383–4403CrossRefGoogle Scholar
  68. Maekawa H, Toniolo C, Broxterman QB, Ge N-H (2007) Two-dimensional infrared spectral signatures of 310- and α-helical peptides. J Phys Chem B 111(12):3222–3235PubMedCrossRefGoogle Scholar
  69. Malak RA, Gao ZN, Wishart JF, Isied SS (2004) Long-range electron transfer across peptide bridges: the transition from electron superexchange to hopping. J Am Chem Soc 126(43):13888PubMedCrossRefGoogle Scholar
  70. Malesevic M, Strijowski U, Bächle D, Sewald N (2004) An improved method for the solution cyclization of peptides under pseudo-high dilution conditions. J Biotechnol 112(1-2):73–77PubMedCrossRefGoogle Scholar
  71. Mandal HS, Kraatz H-B (2012) Electron transfer mechanism in helical peptides. J Phys Chem Lett 3(6):709–713PubMedCrossRefGoogle Scholar
  72. Marques-Gonzalez S, Yufit DS, Howard JAK, Martin S, Osorio HM, Garcia-Suarez VM, Nichols RJ, Higgins SJ, Cea P, Low PJ (2013) Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact. Dalton T 42(2):338–341CrossRefGoogle Scholar
  73. McCreery RL, Bergren AJ (2009) Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication. Adv Mater 21(43):4303–4322PubMedCrossRefGoogle Scholar
  74. Morita T, Kimura S (2003) Long-range electron transfer over 4 nm governed by an inelastic hopping mechanism in self-assembled monolayers of helical peptides. J Am Chem Soc 125(29):8732–8733PubMedCrossRefGoogle Scholar
  75. Morita T, Kimura S, Kobayashi S, Imanishi Y (2000) Photocurrent generation under a large dipole moment formed by self-assembled monolayers of helical peptides having an N-ethylcarbazolyl group. J Am Chem Soc 122(12):2850–2859CrossRefGoogle Scholar
  76. Morita T, Yanagisawa K, Kimura S (2008) Enhanced photocurrent generation by electron hopping through regularly-arranged chromophores in a helical peptide monolayer. Polym J 40(8):700–709CrossRefGoogle Scholar
  77. Nakayama H, Kimura S (2009) Chirally twisted oligo(phenyleneethynylene) by cyclization with alpha-helical peptide. J Org Chem 74(9):3462–3468PubMedCrossRefGoogle Scholar
  78. Neuhaus DE, P. A (1993) Methods in molecular biology, vol 17. Humana Press, CliftonGoogle Scholar
  79. Niggli DA, Ebert M-O, Lin Z, Seebach D, van Gunsteren WF (2012) Helical content of a β3-octapeptide in methanol: molecular dynamics simulations explain a seeming discrepancy between conclusions derived from CD and NMR data. Chem Eur J 18(2):586–593PubMedCrossRefGoogle Scholar
  80. Ousaka N, Sato T, Kuroda R (2007) Intramolecular crosslinking of an optically inactive 310-helical peptide: stabilization of structure and helix sense. J Am Chem Soc 130(2):463–465CrossRefGoogle Scholar
  81. Paredes SB, Reiter C, Rodriguez R, A. (2009) Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: streptopelia risoria as a model. Int J Tryptophan Res 2:23–36PubMedPubMedCentralGoogle Scholar
  82. Pedersen DS, Abell A (2011) 1,2,3-triazoles in peptidomimetic chemistry. Eur J Org Chem 2011(13):2399–2411CrossRefGoogle Scholar
  83. Peeters E, Christiaans MPT, Janssen RAJ, Schoo HFM, Dekkers HPJM, Meijer EW (1997) Circularly polarized electroluminescence from a polymer light-emitting diode. J Am Chem Soc 119(41):9909–9910CrossRefGoogle Scholar
  84. Pehere AD, Abell AD (2012) New beta-strand templates constrained by Huisgen cycloaddition. Org Lett 14(5):1330–1333PubMedCrossRefGoogle Scholar
  85. Pehere AD, Pietsch M, Gütschow M, Neilsen PM, Pedersen DS, Nguyen S, Zvarec O, Sykes MJ, Callen DF, Abell AD (2013a) Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors. Chem Eur J 19(24):7975–7981PubMedCrossRefGoogle Scholar
  86. Pehere AD, Sumby CJ, Abell AD (2013b) New cylindrical peptide assemblies defined by extended parallel [small beta]-sheets. Org Biomol Chem 11(3):425–429PubMedCrossRefGoogle Scholar
  87. Petrov EG, Shevchenko YV, Teslenko VI, May V (2001) Nonadiabatic donor-acceptor electron transfer mediated by a molecular bridge: a unified theoretical description of the superexchange and hopping mechanism. J Chem Phys 115(15):7107–7122CrossRefGoogle Scholar
  88. Petrov EG, Shevchenko YV, May V (2003) On the length dependence of bridge-mediated electron transfer reactions. Elsevier 288:269–279Google Scholar
  89. Polo F, Antonello S, Formaggio F, Toniolo C, Maran F (2005) Evidence against the hopping mechanism as an important electron transfer pathway for conformationally constrained oligopeptides. J Am Chem Soc 127(2):492PubMedCrossRefGoogle Scholar
  90. Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283PubMedCrossRefGoogle Scholar
  91. Riek RP, Rigoutsos I, Novotny J, Graham RM (2001) Non-α-helical elements modulate polytopic membrane protein architecture. J Mol Biol 306(2):349–362PubMedCrossRefGoogle Scholar
  92. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599CrossRefGoogle Scholar
  93. Sarangi NK, Patnaik A (2012) L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence. ChemPhysChem 13(18):4258–4270PubMedCrossRefGoogle Scholar
  94. Sasaki H, Makino M, Sisido M, Smith TA, Ghiggino KP (2001) Photoinduced electron transfer on beta-sheet cyclic peptides. J Phys Chem B 105(42):10416–10423CrossRefGoogle Scholar
  95. Schievano E, Bisello A, Chorev M, Bisol A, Mammi S, Peggion E (2001) Aib-rich peptides containing lactam-bridged side chains as models of the 3(10)-helix. J Am Chem Soc 123(12):2743–2751PubMedCrossRefGoogle Scholar
  96. Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH (2000) Charge conductivity in peptides: dynamic simulations of a bifunctional model supporting experimental data. PNASUSA 97(3):1068–1072CrossRefGoogle Scholar
  97. Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH (2007) Distal charge transport in peptides. Angew Chem Int Ed 46(18):3196–3210CrossRefGoogle Scholar
  98. Sek S (2013) Review peptides and proteins wired into the electrical circuits: an SPM-based approach. Biopolymers 100(1):71–81PubMedCrossRefGoogle Scholar
  99. Sek S, Sepiol A, Tolak A, Misicka A, Bilewicz R (2004) Distance dependence of the electron transfer rate through oligoglycine spacers introduced into self-assembled monolayers. J Phys Chem B 108(24):8102–8105CrossRefGoogle Scholar
  100. Seyedsayamdost MR, Yee CS, Reece SY, Nocera DG, Stubbe J (2006) pH rate profiles of FnY356−R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: evidence that Y356 is a redox-active amino acid along the radical propagation pathway. J Am Chem Soc 128(5):1562–1568PubMedCrossRefGoogle Scholar
  101. Shih C, Museth AK, Abrahamsson M, Blanco-Rodriguez AM, Di Bilio AJ, Sudhamsu J, Crane BR, Ronayne KL, Towrie M, Vlcek A, Richards JH, Winkler JR, Gray HB (2008) Tryptophan-accelerated electron flow through proteins. Science 320(5884):1760–1762PubMedCrossRefGoogle Scholar
  102. Sisido M, Hoshino S, Kusano H, Kuragaki M, Makino M, Sasaki H, Smith TA, Ghiggino KP (2001) Distance dependence of photoinduced electron transfer along alpha-helical polypeptides. J Phys Chem B 105(42):10407–10415CrossRefGoogle Scholar
  103. Smestad GP, Gratzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitised nanocrystalline energy converter. J Chem Educ 75(6):752–756CrossRefGoogle Scholar
  104. Smeu M, Wolkow RA, Guo H (2009) Conduction pathway of π-stacked ethylbenzene molecular wires on Si(100). J Am Chem Soc 131(31):11019–11026PubMedCrossRefGoogle Scholar
  105. Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM (1996) Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol 255(3):494–506PubMedCrossRefGoogle Scholar
  106. Staykov A, Li X, Tsuji Y, Yoshizawa K (2012) Current rectification in nitrogen- and boron-doped nanographenes and cyclophanes. J Phys Chem C 116(34):18451–18459CrossRefGoogle Scholar
  107. Stubbe J, Nocera DG, Yee CS, Chang MCY (2003) Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103(6):2167–2202PubMedCrossRefGoogle Scholar
  108. Takeda K, Morita T, Kimura S (2008) Effects of monolayer structures on long-range electron transfer in helical peptide monolayer. J Phys Chem B 112(40):12840–12850PubMedCrossRefGoogle Scholar
  109. Taylor JW (2002) The synthesis and study of side-chain lactam-bridged peptides. Biopolymers 66(1):49–75PubMedCrossRefGoogle Scholar
  110. Toniolo C, Benedetti E (1991) The polypeptide 310-helix. Trends Biochem Sci 16(0):350–353Google Scholar
  111. Toniolo C, Polese A, Formaggio F, Crisma M, Kamphuis J (1996) Circular dichroism spectrum of a peptide 3(10)-helix. J Am Chem Soc 118(11):2744–2745CrossRefGoogle Scholar
  112. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064PubMedCrossRefGoogle Scholar
  113. Uji H, Morita T, Kimura S (2013) Molecular direction dependence of single-molecule conductance of a helical peptide in molecular junction. Phys Chem Chem Phys 15(3):757–760PubMedCrossRefGoogle Scholar
  114. van Lierop BJ, Bornschein C, Jackson WR, Robinson AJ (2011) Ring-closing metathesis in peptides - the sting is in the tail! Aust J Chem 64(6):806–811CrossRefGoogle Scholar
  115. Wang M, Gao J, Muller P, Giese B (2009) Electron transfer in peptides with cysteine and methionine as relay amino acids. Angew Chem Int Ed 48(23):4232–4234CrossRefGoogle Scholar
  116. Watanabe J, Morita T, Kimura S (2005) Effects of dipole moment, linkers, and chromophores at side chains on long-range electron transfer through helical peptides. J Phys Chem B 109(30):14416PubMedCrossRefGoogle Scholar
  117. Wittekindt C, Schwarz M, Friedrich T, Koslowski T (2009) Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: an unusual mechanism deduced from atomistic theory and bioinformatics. J Am Chem Soc 131(23):8134–8140PubMedCrossRefGoogle Scholar
  118. Xu Y, Cui B, Ji G, Li D, Liu D (2013) Effect of the orientation of nitro group on the electronic transport properties in single molecular field-effect transistors. Phys Chem Chem Phys 15(3):832–836PubMedCrossRefGoogle Scholar
  119. Yanagisawa K, Morita T, Kimura S (2004) Efficient photocurrent generation by self-assembled monolayers composed of 3(10)-helical peptides carrying linearly spaced naphthyl groups at the side chains. J Am Chem Soc 126(40):12780–12781PubMedCrossRefGoogle Scholar
  120. Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can switch photocurrent direction. Science 304(5679):1944–1947PubMedCrossRefGoogle Scholar
  121. Yasutomi S, Morita T, Kimura S (2005) pH-controlled switching of photocurrent direction by self-assembled monolayer of helical peptides. Journal of the Am Chem Soc 127(42):14564–14565CrossRefGoogle Scholar
  122. Yew SY, Shekhawat G, Wangoo N, Mhaisalkar S, Suri CR, Dravid VP, Lam YM (2011) Design of single peptides for self-assembled conduction channels. Nanotechnology 22:215606PubMedCrossRefGoogle Scholar
  123. Yu J, Zvarec O, Huang DM, Bissett MA, Scanlon DB, Shapter JG, Abell AD (2012) Electron transfer through α-peptides attached to vertically aligned carbon nanotube arrays: a mechanistic transition. Chem Comm 48(8):1132–1134PubMedCrossRefGoogle Scholar
  124. Yu J, Horsley JR, Moore KE, Shapter JG, Abell AD (2014) The effect of a macrocyclic constraint on electron transfer in helical peptides: a step towards tunable molecular wires. Chem Comm 50(14):1652PubMedCrossRefGoogle Scholar
  125. Yu J, Horsley JR, Abell AD (2016) Turning electron transfer ‘on-off’ in peptides through side-bridge gating. Electrochim Acta 209:65–74CrossRefGoogle Scholar
  126. Yu J, Horsley JR, Abell AD (2017) Exploiting the interplay of quantum interference and backbone rigidity on electronic transport in peptides: a step towards bio-inspired quantum interferometers. Mol Sys Des Eng 2:67–77CrossRefGoogle Scholar
  127. Zhuang W, Hayashi T, Mukamel S (2009) Coherent multidimensional vibrational spectroscopy of biomolecules: concepts, simulations, and challenges. Angew Chem Int Ed 48(21):3750–3781CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • John Horsley
    • 1
    Email author
  • Jingxian Yu
    • 1
  • Yuan Qi Yeoh
    • 1
  • Andrew Abell
    • 1
  1. 1.ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia

Personalised recommendations