Advertisement

Programmable Bio-surfaces for Biomedical Applications

  • Kiyotaka ShibaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1030)

Abstract

A peptide can be used as a functional building block to construct artificial systems when it has sufficient transplantability and functional independence in terms of its assigned function. Recent advances in in vitro evolution systems have been increasing the list of peptides that specifically bind to certain targets, such as proteins and cells. By properly displaying these peptides on solid surfaces, we can endow the inorganic materials with various biological functions, which will contribute to the development of diagnosis and therapeutic medical devices. Here, the methods for the peptide-based surface functionalization are reviewed by focusing on sources of peptides as well as methods of immobilization.

Keywords

Peptide aptamer In vitro evolution Artificial peptide Motif programing Material surface Diagnostic Exosome 

References

  1. Agterberg M, Adriaanse H, van Bruggen A, Karperien M, Tommassen J (1990) Outer-membrane phoe protein of Escherichia coli k-12 as an exposure vector: possibilities and limitations. Gene 88:37–45PubMedCrossRefGoogle Scholar
  2. Aida T, Meijer EW, Stupp SI (2012) Functional supramolecular polymers. Science 335(6070):813–817. doi: 10.1126/science.1205962 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baardsnes J, Jelokhani-Niaraki M, Kondejewski LH, Kuiper MJ, Kay CM, Hodges RS, Davies PL (2001) Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface. Protein Sci 10(12):2566–2576PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baker M (2011) Stem cells in culture: defining the substrate. Nat Methods 8(4):293–297. doi: 10.1038/nmeth0411-293 CrossRefGoogle Scholar
  5. Baneyx F, Schwartz DT (2007) Selection and analysis of solid-binding peptides. Curr Opin Biotechnol 18(4):312–317. doi: 10.1016/j.copbio.2007.04.008 PubMedCrossRefGoogle Scholar
  6. Barbas CF III, Burton DR, Scott JK, Silverman GJ (2001) Phage display : a laboratory manual. Cold Spring Harbor laboratory press. Cold Spring Harbor, New YorkGoogle Scholar
  7. Bhardwaj G, Mulligan VK, Bahl CD, Gilmore JM, Harvey PJ, Cheneval O, Buchko GW, Pulavarti SV, Kaas Q, Eletsky A, Huang PS, Johnsen WA, Greisen PJ, Rocklin GJ, Song Y, Linsky TW, Watkins A, Rettie SA, Xu X, Carter LP, Bonneau R, Olson JM, Coutsias E, Correnti CE, Szyperski T, Craik DJ, Baker D (2016) Accurate de novo design of hyperstable constrained peptides. Nature 538(7625):329–335. doi: 10.1038/nature19791 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557PubMedCrossRefGoogle Scholar
  9. Brown S (1992) Engineered iron oxide-adhesion mutants of the escherichia coli phage l receptor. Proc Natl Acad Sci U S A 89(18):8651–8655PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15(3):269–272PubMedCrossRefGoogle Scholar
  11. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicin. Engineering materials. Springer Verlag Berlin, Heidelberg/BerlinGoogle Scholar
  12. Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33(5):259–268. doi: 10.1016/j.tibtech.2015.02.005 PubMedCrossRefGoogle Scholar
  13. Castagnoli L, Zucconi A, Quondam M, Rossi M, Vaccaro P, Panni S, Paoluzi S, Santonico E, Dente L, Cesareni G (2001) Alternative bacteriophage display systems. Comb Chem High Throughput Screen 4(2):121–133PubMedCrossRefGoogle Scholar
  14. Celiz AD, Smith JG, Langer R, Anderson DG, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR (2014) Materials for stem cell factories of the future. Nat Mater 13(6):570–579. doi: 10.1038/nmat3972 PubMedCrossRefGoogle Scholar
  15. Chen ZY, Wang YX, Lin Y, Zhang JS, Yang F, Zhou QL, Liao YY (2014) Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int 2014:1. doi: 10.1155/2014/819324 Google Scholar
  16. Colas P, Cohen B, Jessen T, Grishina I, Mccoy J, Brent R (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380(6574):548–550PubMedCrossRefGoogle Scholar
  17. Cui Y, Kim SN, Naik RR, McAlpine MC (2012) Biomimetic peptide nanosensors. Acc Chem Res 45:696. doi: 10.1021/ar2002057 PubMedCrossRefGoogle Scholar
  18. Cutler CS, Chanda N, Shukla R, Sisay N, Cantorias M, Zambre A, McLaughlin M, Kelsey J, Upenandran A, Robertson D, Deutscher S, Kannan R, Katti K (2013) Nanoparticles and phage display selected peptides for imaging and therapy of cancer. Recent Results Cancer Res 194:133–147. doi: 10.1007/978-3-642-27994-2_8 PubMedCrossRefGoogle Scholar
  19. Cwirla SE, Peters EA, Barrett RW, Dower WJ (1990) Peptides on phage – a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A 87(16):6378–6382PubMedPubMedCentralCrossRefGoogle Scholar
  20. Danner S, Belasco JG (2001) T7 phage display: a novel genetic selection system for cloning rna-binding proteins from cdna libraries. Proc Natl Acad Sci U S A 98(23):12954–12959PubMedPubMedCentralCrossRefGoogle Scholar
  21. Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL (2007) Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2(5):347–355. doi: 10.1021/cb700032u PubMedCrossRefGoogle Scholar
  22. Derda R, Musah S, Orner BP, Klim JR, Li L, Kiessling LL (2010) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc 132(4):1289–1295. doi: 10.1021/ja906089g PubMedPubMedCentralCrossRefGoogle Scholar
  23. Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249(4967):404–406PubMedCrossRefGoogle Scholar
  24. Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37(5):625–636PubMedGoogle Scholar
  25. Ellington AD, Szostak JW (1990) In vitro selection of rna molecules that bind specific ligands. Nature 346:818–822PubMedCrossRefGoogle Scholar
  26. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852PubMedCrossRefGoogle Scholar
  27. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541(7638):488–493. doi: 10.1038/nature21049 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fan Q, Leuther KK, Holmes CP, Fong KL, Zhang J, Velkovska S, Chen MJ, Mortensen RB, Leu K, Green JM, Schatz PJ, Woodburn KW (2006) Preclinical evaluation of hematide, a novel erythropoiesis stimulating agent, for the treatment of anemia. Exp Hematol 34(10):1303–1311. doi: 10.1016/j.exphem.2006.05.012 PubMedCrossRefGoogle Scholar
  29. Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Applications of combinatorial technologies to drug discovery 1. Background and peptide combinatorial libraries. J Med Chem 37(9):1233–1251PubMedCrossRefGoogle Scholar
  30. Gautam A, Kapoor P, Chaudhary K, Kumar R, Open Source Drug Discovery C, Raghava GP (2014) Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics. Curr Med Chem 21(21):2367–2391PubMedCrossRefGoogle Scholar
  31. Georgiou G, Stephens DL, Stathopoulos C, Poetschke HL, Mendenhall J, Earhart CF (1996) Display of beta-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by lpp′-OmpA′-beta-lactamase fusions. Protein Eng 9(2):239–247PubMedCrossRefGoogle Scholar
  32. Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) Applications of combinatorial technologies to drug discovery .2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37(10):1385–1401PubMedCrossRefGoogle Scholar
  33. Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, Willis L, Drndic M, Kikkawa JM, DeGrado WF (2011) Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332(6033):1071–1076. doi: 10.1126/science.1198841 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gungormus M, Branco M, Fong H, Schneider JP, Tamerler C, Sarikaya M (2010) Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials 31(28):7266–7274. doi: 10.1016/j.biomaterials.2010.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hamilton PT, Jansen MS, Ganesan S, Benson RE, Hyde-Deruyscher R, Beyer WF, Gile JC, Nair SA, Hodges JA, Gron H (2013) Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides. PLoS One 8(8):e70715. doi: 10.1371/journal.pone.0070715 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94(10):4937–4942PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hartung A, Bitton-Worms K, Rechtman MM, Wenzel V, Boergermann JH, Hassel S, Henis YI, Knaus P (2006) Different routes of bone morphogenic protein (bmp) receptor endocytosis influence bmp signaling. Mol Cell Biol 26(20):7791–7805. doi: 10.1128/MCB.00022-06 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hassert R, Beck-Sickinger AG (2013) Tuning peptide affinity for biofunctionalized surfaces. Eur J Pharm Biopharm 85(1):69–77. doi: 10.1016/j.ejpb.2013.02.006 PubMedCrossRefGoogle Scholar
  39. Hattori T, Umetsu M, Nakanishi T, Tsumoto K, Ohara S, Abe H, Naito M, Asano R, Adschiri T, Kumagai I (2008) Grafting of material-binding function into antibodies functionalization by peptide grafting. Biochem Biophys Res Commun 365(4):751–757. doi: 10.1016/j.bbrc.2007.11.062 PubMedCrossRefGoogle Scholar
  40. He B, Chai G, Duan Y, Yan Z, Qiu L, Zhang H, Liu Z, He Q, Han K, Ru B, Guo FB, Ding H, Lin H, Wang X, Rao N, Zhou P, Huang J (2016) Bdb: biopanning data bank. Nucleic Acids Res 44(D1):D1127–D1132. doi: 10.1093/nar/gkv1100 PubMedCrossRefGoogle Scholar
  41. Hodneland CD, Lee YS, Min DH, Mrksich M (2002) Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci U S A 99(8):5048–5052. doi: 10.1073/pnas.072685299 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic sams that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17(9):2841–2850. doi: 10.1021/la0015258 CrossRefGoogle Scholar
  43. Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state nmr. Protein Sci 20(4):641–655. doi: 10.1002/pro.600 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Houseman BT, Mrksich M (1998) Efficient solid-phase synthesis of peptide-substituted alkanethiols for the preparation of substrates that support the adhesion of cells. J Org Chem 63(21):7552–7555PubMedCrossRefGoogle Scholar
  45. Houseman BT, Gawalt ES, Mrksich M (2003) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19(5):1522–1531. doi: 10.1021/la0262304 CrossRefGoogle Scholar
  46. Hudalla GA, Koepsel JT, Murphy WL (2011) Surfaces that sequester serum-borne heparin amplify growth factor activity. Adv Mater 23(45):5415–5418. doi: 10.1002/adma.201103046 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ikezoe Y, Kumashiro Y, Tamada K, Matsui T, Yamashita I, Shiba K, Hara M (2008) Growth of giant two-dimensional crystal of protein molecules from a three-phase contact line. Langmuir 24(22):12836–12841. doi: 10.1021/la802104f PubMedCrossRefGoogle Scholar
  48. Israelachvili JN (2001) Intermolecular and surface forces. Academic, San DeigoGoogle Scholar
  49. Kadoma Y, Nakabayashi E, Masuhara J, Yamauchi E (1978) Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Kobunshi Ronbunshu 35(7):423–427CrossRefGoogle Scholar
  50. Kase D, Kulp JL III, Yudasaka M, Evans JS, Iijima S, Shiba K (2004) Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir 20(20):8939–8941PubMedCrossRefGoogle Scholar
  51. Kashiwagi K, Tsuji T, Shiba K (2009) Directional bmp-2 for functionalization of titanium surfaces. Biomaterials 30(6):1166–1175. doi: 10.1016/j.biomaterials.2008.10.040 PubMedCrossRefGoogle Scholar
  52. Kastin AJ (2006) Handbook of biologically active peptides. AcademicGoogle Scholar
  53. Kauffman WB, Fuselier T, He J, Wimley WC (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40(12):749–764. doi: 10.1016/j.tibs.2015.10.004 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Khoo X, Hamilton P, O'Toole GA, Snyder BD, Kenan DJ, Grinstaff MW (2009) Directed assembly of pegylated-peptide coatings for infection-resistant titanium metal. J Am Chem Soc 131(31):10992–10997. doi: 10.1021/ja9020827 PubMedCrossRefGoogle Scholar
  55. Kim G, Yoo CE, Kim M, Kang HJ, Park D, Lee M, Huh N (2012) Noble polymeric surface conjugated with zwitterionic moieties and antibodies for the isolation of exosomes from human serum. Bioconjug Chem 23(10):2114–2120. doi: 10.1021/bc300339b PubMedCrossRefGoogle Scholar
  56. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods 7(12):989–994. doi: 10.1038/nmeth.1532 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kokubun K, Kashiwagi K, Yoshinari M, Inoue T, Shiba K (2008) Motif-programmed artificial extracellular matrix. Biomacromolecules 9(11):3098–3105. doi: 10.1021/bm800638z PubMedCrossRefGoogle Scholar
  58. Kozlovska TM, Cielens I, Vasiljeva I, Strelnikova A, Kazaks A, Dislers A, Dreilina D, Ose V, Gusars I, Pumpens P (1996) RNA phage Q beta coat protein as a carrier for foreign epitopes. Intervirology 39(1-2):9–15PubMedCrossRefGoogle Scholar
  59. Kumada Y (2014) Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. Biochim Biophys Acta 1844(11):1960–1969. doi: 10.1016/j.bbapap.2014.07.007 PubMedCrossRefGoogle Scholar
  60. Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71(4):777–790PubMedCrossRefGoogle Scholar
  61. Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360. doi: 10.1126/science.1241459 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Becard G, Combier JP (2015) Primary transcripts of micrornas encode regulatory peptides. Nature 520(7545):90–93. doi: 10.1038/nature14346 PubMedCrossRefGoogle Scholar
  63. Lawler J, Weinstein R, Hynes RO (1988) Cell attachment to thrombospondin: the role of arg-gly-asp, calcium, and integrin receptors. J Cell Biol 107(6):2351–2361. doi: 10.1083/jcb.107.6.2351 PubMedCrossRefGoogle Scholar
  64. Lee JH (2013) Conjugation approaches for construction of aptamer-modified nanoparticles for application in imaging. Curr Top Med Chem 13(4):504–512PubMedCrossRefGoogle Scholar
  65. Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE (2006) Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A 79A(1):1–5. doi: 10.1002/jbm.a.30732 CrossRefGoogle Scholar
  66. Li L, Klim JR, Derda R, Courtney AH, Kiessling LL (2011) Spatial control of cell fate using synthetic surfaces to potentiate tgf-beta signaling. Proc Natl Acad Sci U S A 108(29):11745–11750. doi: 10.1073/pnas.1101454108 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li Q, Wang Z, Zhang S, Zheng W, Zhao Q, Zhang J, Wang L, Wang S, Kong D (2013) Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture. Mater Sci Eng C Mater Biol Appl 33(3):1646–1653. doi: 10.1016/j.msec.2012.12.074 PubMedCrossRefGoogle Scholar
  68. Li Z, Kameda T, Isoshima T, Kobatake E, Tanaka T, Ito Y, Kawamoto M (2015) Solubilization of single-walled carbon nanotubes using a peptide aptamer in water below the critical micelle concentration. Langmuir 31(11):3482–3488. doi: 10.1021/la504777b PubMedCrossRefGoogle Scholar
  69. Lima e Silva R, Kanan Y, Mirando AC, Kim J, Shmueli RB, Lorenc VE, Fortmann SD, Sciamanna J, Pandey NB, Green JJ, Popel AS, Campochiaro PA (2017) Tyrosine kinase blocking collagen iv–derived peptide suppresses ocular neovascularization and vascular leakage. Sci Transl Med 9(373):eaai8030. doi: 10.1126/scitranslmed.aai8030 CrossRefGoogle Scholar
  70. Lin CC, Anseth KS (2009) Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv Funct Mater 19(14):2325. doi: 10.1002/adfm.200900107 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lipovsek D, Pluckthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290(1–2):51–67PubMedCrossRefGoogle Scholar
  72. Litvinov SV, Velders MP, Bakker HA, Fleuren GJ, Warnaar SO (1994) Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 125(2):437–446PubMedCrossRefGoogle Scholar
  73. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170. doi: 10.1021/cr0300789 PubMedCrossRefGoogle Scholar
  74. Lu Z, Murray KS, Cleave VV, LaVallie ER, Stahl ML, McCoy JM (1995) Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology 13:366–372PubMedGoogle Scholar
  75. Mahlapuu M, Hakansson J, Ringstad L, Bjorn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. doi: 10.3389/fcimb.2016.00194 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mann S (2001) Biomineralization-principles and concepts in bioinorganic materials chemistry. Oxford chemistry masters. Oxford University Press, OxfordGoogle Scholar
  77. Martins IM, Reis RL, Azevedo HS (2016) Phage display technology in biomaterials engineering: progress and opportunities for applications in regenerative medicine. ACS Chem Biol 11(11):2962–2980. doi: 10.1021/acschembio.5b00717 PubMedCrossRefGoogle Scholar
  78. Matsui T, Matsukawa N, Iwahori K, Sano K, Shiba K, Yamashita I (2007) Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides. Langmuir 23(4):1615–1618PubMedCrossRefGoogle Scholar
  79. Matsumura S, Ajima K, Yudasaka M, Iijima S, Shiba K (2007) Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol Pharm 4(5):723–729PubMedCrossRefGoogle Scholar
  80. Matsumura S, Sato S, Yudasaka M, Tomida A, Tsuruo T, Iijima S, Shiba K (2009) Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol Pharm 6(2):441–447. doi: 10.1021/mp800141v PubMedCrossRefGoogle Scholar
  81. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91:9022–9026PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9(9):768–778. doi: 10.1038/nmat2812 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610. doi: 10.1038/nbt.1629 PubMedCrossRefGoogle Scholar
  84. Meyers SR, Grinstaff MW (2012) Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev 112(3):1615–1632. doi: 10.1021/cr2000916 PubMedCrossRefGoogle Scholar
  85. Meyers SR, Hamilton PT, Walsh EB, Kenan DJ, Grinstaff MW (2007) Endothelialization of titanium surfaces. Adv Mater 19(18):2492–2498CrossRefGoogle Scholar
  86. Mikawa YG, Maruyama IN, Brenner S (1996) Surface display of proteins on bacteriophage lambda heads. J Mol Biol 262(1):21–30PubMedCrossRefGoogle Scholar
  87. Morton LA, Yang H, Saludes JP, Fiorini Z, Beninson L, Chapman ER, Fleshner M, Xue D, Yin H (2013) Marcks-ed peptide as a curvature and lipid sensor. ACS Chem Biol 8(1):218–225. doi: 10.1021/cb300429e PubMedCrossRefGoogle Scholar
  88. Mottershead D, van der Linden I, von Bonsdorff CH, Keinanen K, OkerBlom C (1997) Baculoviral display of the green fluorescent protein and rubella virus envelope proteins. Biochem Biophys Res Commun 238(3):717–722PubMedCrossRefGoogle Scholar
  89. Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78. doi: 10.1146/annurev.bb.25.060196.000415 PubMedCrossRefGoogle Scholar
  90. Mrksich M, Grunwell JR, Whitesides GM (1995) Biospecific adsorption of carbonic anhydrase to self-assembled monolayers of alkanethiolates that present benzenesulfonamide groups on gold. JACS 117(48):12009–12010. doi: 10.1021/ja00153a029 CrossRefGoogle Scholar
  91. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mrna bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414(2):405–408PubMedCrossRefGoogle Scholar
  92. Ng S, Jafari MR, Derda R (2012) Bacteriophages and viruses as a support for organic synthesis and combinatorial chemistry. ACS Chem Biol 7(1):123–138. doi: 10.1021/cb200342h PubMedCrossRefGoogle Scholar
  93. Nickels JD, Schmidt CE (2012) Surface modification of the conducting polymer, polypyrrole, via affinity peptide. J Biomed Mater Res A 101A(5):1464–1471. doi: 10.1002/jbm.a.34435 CrossRefGoogle Scholar
  94. Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, Troxler RF (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on candida albicans. J Biol Chem 263(16):7472–7477PubMedGoogle Scholar
  95. Panayotov IV, Vladimirov BS, Dutilleul PC, Levallois B, Cuisinier F (2015) Strategies for immobilization of bioactive organic molecules on titanium implant surfaces - a review. Folia Med (Plovdiv) 57(1):11–18. doi: 10.1515/folmed-2015-0014 Google Scholar
  96. Pavan S, Berti F (2012) Short peptides as biosensor transducers. Anal Bioanal Chem 402(10):3055–3070. doi: 10.1007/s00216-011-5589-8 PubMedCrossRefGoogle Scholar
  97. Pu K, Li C, Zhang N, Wang H, Shen W, Zhu Y (2017) Epithelial cell adhesion molecule independent capture of non-small lung carcinoma cells with peptide modified microfluidic chip. Biosens Bioelectron 89(Pt 2):927–931. doi: 10.1016/j.bios.2016.09.092 PubMedCrossRefGoogle Scholar
  98. Roberts RW, Szostak JW (1997) Rna-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94(23):12297–12302PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rogers JM, Suga H (2015) Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming. Org Biomol Chem 13(36):9353–9363. doi: 10.1039/c5ob01336d PubMedCrossRefGoogle Scholar
  100. Sakai-Kato K, Kato M, Ishihara K, Toyo'oka T (2004) An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab Chip 4(1):4–6. doi: 10.1039/b310932a PubMedCrossRefGoogle Scholar
  101. Saludes JP, Morton LA, Ghosh N, Beninson L, Chapman ER, Fleshner M, Yin H (2012) Detection of highly curved membrane surfaces using a cyclic peptide derived from synaptotagmin-I. ACS Chem Biol 7(10):1629–1635. doi: 10.1021/cb3002705 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96(2):129–154PubMedCrossRefGoogle Scholar
  103. Sanghvi AB, Miller KP, Belcher AM, Schmidt CE (2005) Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer. Nat Mater 4(6):496–502PubMedCrossRefGoogle Scholar
  104. Sano K, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125(47):14234–14235PubMedCrossRefGoogle Scholar
  105. Sano K, Shiba K (2008) In aqua manufacturing of a three-dimensional nanostructure using a peptide aptamer. MRS Bull 33(05):524–529CrossRefGoogle Scholar
  106. Sano K, Ajima K, Iwahori K, Yudasaka M, Iijima S, Yamashita I, Shiba K (2005a) Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. Small 1(8–9):826–832PubMedCrossRefGoogle Scholar
  107. Sano K, Sasaki H, Shiba K (2005b) Specificity and biomineralization activities of Ti-binding peptide-1 (TBP-1). Langmuir 21(7):3090–3095PubMedCrossRefGoogle Scholar
  108. Sano K, Sasaki H, Shiba K (2006) Utilization of the pleiotropy of a peptidic aptamer to fabricate heterogeneous nanodot-containing multilayer nanostructures. J Am Chem Soc 128(5):1717–1722PubMedCrossRefGoogle Scholar
  109. Sano K, Yoshii S, Yamashita I, Shiba K (2007) In aqua structuralization of a three-dimensional configuration using biomolecules. Nano Lett 7(10):3200–3202PubMedCrossRefGoogle Scholar
  110. Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577–585. doi: 10.1038/nmat964 PubMedCrossRefGoogle Scholar
  111. Sato S, Ikemi M, Kikuchi T, Matsumura S, Shiba K, Fujita M (2015) Bridging adhesion of a protein onto an inorganic surface using self-assembled dual-functionalized spheres. J Am Chem Soc 137(40):12890–12896. doi: 10.1021/jacs.5b06184 PubMedCrossRefGoogle Scholar
  112. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249(4967):386–390PubMedCrossRefGoogle Scholar
  113. Seker UO, Demir HV (2011) Material binding peptides for nanotechnology. Molecules 16(12):1426–1451. doi: 10.3390/molecules16021426 PubMedCrossRefGoogle Scholar
  114. Shao Z, Zhang X, Pi Y, Wang X, Jia Z, Zhu J, Dai L, Chen W, Yin L, Chen H, Zhou C, Ao Y (2012) Polycaprolactone electrospun mesh conjugated with an msc affinity peptide for msc homing in vivo. Biomaterials 33(12):3375–3387. doi: 10.1016/j.biomaterials.2012.01.033 PubMedCrossRefGoogle Scholar
  115. Shao Z, Zhang X, Pi Y, Yin L, Li L, Chen H, Zhou C, Ao Y (2015) Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. J Biomed Mater Res A 103(1):318–329. doi: 10.1002/jbm.a.35177 PubMedCrossRefGoogle Scholar
  116. Shiba K (1998) In vitro constructive approaches to the origin of coding sequences. J Biochem Mol Biol 31(3):209–220Google Scholar
  117. Shiba K (2004) MolCraft: a hierarchical approach to the synthesis of artificial proteins. J Mol Catal B Enzym 28(4-6):145–153CrossRefGoogle Scholar
  118. Shiba K (2010a) Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol 21(4):412–425. doi: 10.1016/j.copbio.2010.07.008 PubMedCrossRefGoogle Scholar
  119. Shiba K (2010b) Natural and artificial peptide motifs: their origins and the application of motif-programming. Chem Soc Rev 39(1):117–126. doi: 10.1039/b719081f PubMedCrossRefGoogle Scholar
  120. Shiba K, Kokubun K, Suga K (2012) Peptides that bind to epithelial cell adhesion molecule. WO2014042209 A1Google Scholar
  121. Shiba K, Hibino K, Yoshida M (2013) Conjugate composed of EpCAM-binding peptide aptamer and phosphorylcholine polymer copolymer. WO2014168230 A1Google Scholar
  122. Sibarani J, Takai M, Ishihara K (2007) Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids Surf B Biointerfaces 54(1):88–93. doi: 10.1016/j.colsurfb.2006.09.024 PubMedCrossRefGoogle Scholar
  123. Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH (2014) Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat Mater 13(10):988–995. doi: 10.1038/nmat4048 PubMedCrossRefGoogle Scholar
  124. So CR, Hayamizu Y, Yazici H, Gresswell C, Khatayevich D, Tamerler C, Sarikaya M (2012) Controlling self-assembly of engineered peptides on graphite by rational mutation. ACS Nano 6(2):1648–1656. doi: 10.1021/nn204631x PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sternberg N, Hoess RH (1995) Display of peptides and proteins on the surface of bacteriophage λ. Proc Natl Acad Sci U S A 92(5):1609–1613PubMedPubMedCentralCrossRefGoogle Scholar
  126. Szostak JW (1992) In vitro genetics. Trends Biochem Sci 17(3):89–93PubMedCrossRefGoogle Scholar
  127. Tamerler C, Sarikaya M (2009) Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides. Philos Trans A Math Phys Eng Sci 367(1894):1705–1726. doi: 10.1098/rsta.2009.0018 PubMedCrossRefGoogle Scholar
  128. Thota V, Perry CC (2016) A review on recent patents and applications of inorganic material binding peptides. Recent Pat Nanotechnol 9(999):1Google Scholar
  129. Tsuji T, Oaki Y, Yoshinari M, Kato T, Shiba K (2010) Motif-programmed artificial proteins mediated nucleation of octacalcium phosphate on titanium substrates. Chem Commun 46(36):6675–6677. doi: 10.1039/c0cc01512a CrossRefGoogle Scholar
  130. Ulmer KM (1983) Protein engineering. Science 219(4585):666–671PubMedCrossRefGoogle Scholar
  131. Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF (2011) Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 40(1):15–28. doi: 10.1007/s00726-010-0516-4 PubMedCrossRefGoogle Scholar
  132. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583. doi: 10.1038/nbt.1631 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wang S, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2(3):196–200PubMedCrossRefGoogle Scholar
  134. Watanabe J, Ishihara K (2008) Establishing ultimate biointerfaces covered with phosphorylcholine groups. Colloids Surf B Biointerfaces 65(2):155–165. doi: 10.1016/j.colsurfb.2008.04.006 PubMedCrossRefGoogle Scholar
  135. Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal Chem 74(20):5161–5168PubMedCrossRefGoogle Scholar
  136. Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190(4218):987–989PubMedCrossRefGoogle Scholar
  137. Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11(9):660–670. doi: 10.1038/nchembio.1883 PubMedCrossRefGoogle Scholar
  138. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668PubMedCrossRefGoogle Scholar
  139. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ (1996) Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273(5274):458–463PubMedCrossRefGoogle Scholar
  140. Wronska DB, Krajewska M, Lygina N, Morrison JC, Juzumiene D, Culp WD, Nair SA, Darby M, Hofmann CM (2014) Peptide-conjugated glass slides for selective capture and purification of diagnostic cells: applications in urine cytology. BioTechniques 57(2):63–71. doi: 10.2144/000114195 PubMedCrossRefGoogle Scholar
  141. Xu Y, Takai M, Ishihara K (2010) Phospholipid polymer biointerfaces for lab-on-a-chip devices. Ann Biomed Eng 38(6):1938–1953. doi: 10.1007/s10439-010-0025-3 PubMedCrossRefGoogle Scholar
  142. Yolamanova M, Meier C, Shaytan AK, Vas V, Bertoncini CW, Arnold F, Zirafi O, Usmani SM, Muller JA, Sauter D, Goffinet C, Palesch D, Walther P, Roan NR, Geiger H, Lunov O, Simmet T, Bohne J, Schrezenmeier H, Schwarz K, Standker L, Forssmann WG, Salvatella X, Khalatur PG, Khokhlov AR, Knowles TP, Weil T, Kirchhoff F, Munch J (2013) Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nat Nanotechnol 8(2):130–136. doi: 10.1038/nnano.2012.248 PubMedCrossRefGoogle Scholar
  143. Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling 26(1):103–110. doi: 10.1080/08927010903216572 PubMedCrossRefGoogle Scholar
  144. Young TS, Young DD, Ahmad I, Louis JM, Benkovic SJ, Schultz PG (2011) Evolution of cyclic peptide protease inhibitors. Proc Natl Acad Sci U S A 108(27):11052–11056. doi: 10.1073/pnas.1108045108 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yuasa K, Kokubu E, Kokubun K, Matsuzaka K, Shiba K, Kashiwagi K, Inoue T (2014) An artificial fusion protein between bone morphogenetic protein 2 and titanium-binding peptide is functional in vivo. J Biomed Mater Res A 102(4):1180–1186. doi: 10.1002/jbm.a.34765 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Protein EngineeringThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan

Personalised recommendations