Green Algae and Networks for Adverse Outcome Pathways

  • Anze Zupanic
  • Smitha Pillai
  • Diana Coman Schmid
  • Kristin Schirmer
Chapter

Abstract

If adverse outcome pathways (AOPs) are to become the new standard predictive tool for chemical risk assessment in ecotoxicology, substantial effort will be required to construct AOPs for exposures to different chemical groups making sure that we have enough representation of different test species to adequately cover the tree of life. This should include plants, which have not yet received sufficient attention from the AOP community. In this chapter, we present Chlamydomonas reinhardtii, a unicellular green microalga that serves as a model organism for, among others, photosynthesis and the circadian rhythm. We review C. reinhardtii as a model organism for ecotoxicology and summarize different publicly available genomic and OMICS resources for the species. We also present a new putative AOP for C. reinhardtii exposed to silver, constructed based on integration of transcriptomic and proteomic datasets. Finally, we present the current state-of-the-art bioinformatics procedures that can be used for constructing AOPs from OMICS type of datasets and evaluate whether the approaches are suitable for C. reinhardtii.

References

  1. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741CrossRefPubMedGoogle Scholar
  2. Aoki Y, Okamura Y, Ohta H, Kinoshita K, Obayashi T (2016) ALCOdb: gene coexpression database for microalgae. Plant Cell Physiol 57(1):e3CrossRefPubMedGoogle Scholar
  3. Becks L, Ellner SP, Jones LE, Hairston NG Jr (2012) The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol Lett 15(5):492–501CrossRefPubMedGoogle Scholar
  4. Blaby IK, Blaby-Haas CE, Tourasse N, Hom EF, Lopez D, Aksoy M, Grossman A, Umen J, Dutcher S, Porter M et al (2014) The Chlamydomonas genome project: a decade on. Trends Plant Sci 19(10):672–680CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boue S, Talikka M, Westra JW, Hayes W, Di Fabio A, Park J, Schlage WK, Sewer A, Fields B, Ansari S et al (2015) Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database (Oxford) 2015:bav030Google Scholar
  6. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287(19):15811–15825CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C et al (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23(4):1273–1292CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cross FR, Umen JG (2015) The Chlamydomonas cell cycle. Plant J 82(3):370–392CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH (2012) Transcriptome-wide changes in Chlamydomonas Reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24(5):1876–1893CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fischer BB, Ledford HK, Wakao S, Huang SG, Casero D, Pellegrini M, Merchant SS, Koller A, Eggen RI, Niyogi KK (2012) SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 109(20):E1302–E1311CrossRefPubMedPubMedCentralGoogle Scholar
  11. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501CrossRefPubMedPubMedCentralGoogle Scholar
  12. Garcia-Reyero N, Habib T, Pirooznia M, Gust KA, Gong P, Warner C, Wilbanks M, Perkins E (2011) Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics. Ecotoxicology 20(3):580–594CrossRefPubMedGoogle Scholar
  13. Garcia-Reyero N, Ekman DR, Habib BT, Villeneuve DL, Collette TW, Bencic DC, Ankley GT, Perkins EJ (2014) Integrated approach to explore the mechanisms of aromatase inhibition and recovery in fathead minnows (Pimephales promelas). Gen Comp Endocrinol 203:193–202CrossRefPubMedGoogle Scholar
  14. Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22(6):2058–2084CrossRefPubMedPubMedCentralGoogle Scholar
  15. Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I challenges and research needs in ecotoxicology. Chemosphere 120:764–777CrossRefPubMedGoogle Scholar
  16. Hansen BO, Vaid N, Musialak-Lange M, Janowski M, Mutwil M (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406CrossRefPubMedGoogle Scholar
  18. Heyndrickx KS, Vandepoele K (2012) Systematic identification of functional plant modules through the integration of complementary data sources. Plant Physiol 159(3):884–901CrossRefPubMedPubMedCentralGoogle Scholar
  19. Houille-Vernes L, Rappaport F, Wollman FA, Alric J, Johnson X (2011) Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc Natl Acad Sci U S A 108(51):20820–20825CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hyduke DR, Palsson BO (2010) Towards genome-scale signalling network reconstructions. Nat Rev Genet 11(4):297–307CrossRefPubMedGoogle Scholar
  21. Imam S, Schauble S, Valenzuela J, Lopez Garcia de Lomana A, Carter W, Price ND, Baliga NS (2015) A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. Plant J 84(6):1239–1256CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kleessen S, Irgang S, Klie S, Giavalisco P, Nikoloski Z (2015) Integration of transcriptomics and metabolomics data specifies the metabolic response of Chlamydomonas to rapamycin treatment. Plant J 81(5):822–835CrossRefPubMedGoogle Scholar
  23. Maertens A, Luechtefeld T, Kleensang A, Hartung T (2015) MPTP’s pathway of toxicity indicates central role of transcription factor SP1. Arch Toxicol 89(5):743–755CrossRefPubMedPubMedCentralGoogle Scholar
  24. Malasarn D, Kropat J, Hsieh SI, Finazzi G, Casero D, Loo JA, Pellegrini M, Wollman FA, Merchant SS (2013) Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii. J Biol Chem 288(15):10672–10683CrossRefPubMedPubMedCentralGoogle Scholar
  25. Matsuo T, Ishiura M (2008) Chlamydomonas reinhardtii, a new model system for studying the circadian clock. Tanpakushitsu Kakusan Koso 53(14):1873–1880PubMedGoogle Scholar
  26. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mettler T, Muhlhaus T, Hemme D, Schottler MA, Rupprecht J, Idoine A, Veyel D, Pal SK, Yaneva-Roder L, Winck FV et al (2014) Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell 26(6):2310–2350CrossRefPubMedPubMedCentralGoogle Scholar
  28. Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154(4):1737–1752CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nestler H, Groh KJ, Schonenberger R, Behra R, Schirmer K, Eggen RI, Suter MJ (2012) Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas Reinhardtii. Aquat Toxicol 110-111:214–224CrossRefPubMedGoogle Scholar
  30. Oki NO, Edwards SW (2016) An integrative data mining approach to identifying adverse outcome pathway signatures. Toxicology 350:49–61CrossRefPubMedGoogle Scholar
  31. Pazour GJ, Witman GB (2000) Forward and reverse genetic analysis of microtubule motors in Chlamydomonas. Methods 22(4):285–298CrossRefPubMedGoogle Scholar
  32. Perkins EJ, Chipman JK, Edwards S, Habib T, Falciani F, Taylor R, Van Aggelen G, Vulpe C, Antczak P, Loguinov A (2011) Reverse engineering adverse outcome pathways. Environ Toxicol Chem 30(1):22–38CrossRefPubMedGoogle Scholar
  33. Perkins EJ, Antczak P, Burgoon L, Falciani F, Garcia-Reyero N, Gutsell S, Hodges G, Kienzler A, Knapen D, McBride M et al (2015) Adverse outcome pathways for regulatory applications: examination of four case studies with different degrees of completeness and scientific confidence. Toxicol Sci 148(1):14–25CrossRefPubMedGoogle Scholar
  34. Pillai S, Behra R, Nestler H, Suter MJ, Sigg L, Schirmer K (2014) Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A 111(9):3490–3495CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47CrossRefPubMedPubMedCentralGoogle Scholar
  36. Romero-Campero FJ, Lucas-Reina E, Said FE, Romero JM, Valverde F (2013) A contribution to the study of plant development evolution based on gene co-expression networks. Front Plant Sci 4:291CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sarkar N, Lemaire S, Wu-Scharf D, Issakidis-Bourguet E, Cerutti H (2005) Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage. Eukaryot Cell 4(2):262–273CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schirmer K, Fischer BB, Madureira DJ, Pillai S (2010) Transcriptomics in ecotoxicology. Anal Bioanal Chem 397(3):917–923CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schmollinger S, Muhlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D et al (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26(4):1410–1435CrossRefPubMedPubMedCentralGoogle Scholar
  40. Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82(3):523–531CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stuart JM, Segal E, Koller D, Kim SK (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255CrossRefPubMedGoogle Scholar
  42. Taylor NS, Merrifield R, Williams TD, Chipman JK, Lead JR, Viant MR (2016) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. Nanotoxicology 10(1):32–41PubMedGoogle Scholar
  43. Titz B, Boue S, Phillips B, Talikka M, Vihervaara T, Schneider T, Nury C, Elamin A, Guedj E, Peck MJ et al (2016) Effects of cigarette smoke, cessation, and switching to two heat-not-burn tobacco products on lung lipid metabolism in C57BL/6 and Apoe−/− mice-an integrative systems toxicology analysis. Toxicol Sci 149(2):441–457CrossRefPubMedGoogle Scholar
  44. Toepel J, Albaum SP, Arvidsson S, Goesmann A, la Russa M, Rogge K, Kruse O (2011) Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii. BMC Genomics 12:579CrossRefPubMedPubMedCentralGoogle Scholar
  45. Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M et al (2012) Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24(10):3921–3948CrossRefPubMedPubMedCentralGoogle Scholar
  46. Urzica EI, Vieler A, Hong-Hermesdorf A, Page MD, Casero D, Gallaher SD, Kropat J, Pellegrini M, Benning C, Merchant SS (2013) Remodeling of membrane lipids in iron-starved Chlamydomonas. J Biol Chem 288(42):30246–30258CrossRefPubMedPubMedCentralGoogle Scholar
  47. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M et al (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142(2):312–320CrossRefPubMedPubMedCentralGoogle Scholar
  48. Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T et al (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(D1):D447–D456CrossRefPubMedGoogle Scholar
  49. Volz DC, Belanger S, Embry M, Padilla S, Sanderson H, Schirmer K, Scholz S, Villeneuve D (2011) Adverse outcome pathways during early fish development: a conceptual framework for identification of chemical screening and prioritization strategies. Toxicol Sci 123(2):349–358CrossRefPubMedGoogle Scholar
  50. Voss B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR (2011) Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. Plant Physiol 155(2):892–905CrossRefPubMedGoogle Scholar
  51. Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP, Somerville C, Loraine A (2006) Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol 142(2):762–774CrossRefPubMedPubMedCentralGoogle Scholar
  52. Williams TD, Turan N, Diab AM, Wu H, Mackenzie C, Bartie KL, Hrydziuszko O, Lyons BP, Stentiford GD, Herbert JM et al (2011) Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. PLoS Comput Biol 7(8):e1002126CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang Z, Shrager J, Jain M, Chang CW, Vallon O, Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3(5):1331–1348CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zheng HQ, Chiang-Hsieh YF, Chien CH, Hsu BK, Liu TL, Chen CN, Chang WC (2014) AlgaePath: comprehensive analysis of metabolic pathways using transcript abundance data from next-generation sequencing in green algae. BMC Genomics 15:196CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anze Zupanic
    • 1
  • Smitha Pillai
    • 1
  • Diana Coman Schmid
    • 1
  • Kristin Schirmer
    • 1
    • 2
    • 3
  1. 1.Department of Environmental ToxicologyEawag, Swiss Federal Institute for Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.EPF Lausanne, School of Architecture, Civil and Environmental EngineeringLausanneSwitzerland
  3. 3.Department of Environmental Systems ScienceETH ZürichZürichSwitzerland

Personalised recommendations