Movement Among Islands by Host, Vector, or Parasite

Chapter
Part of the Social and Ecological Interactions in the Galapagos Islands book series (SESGI)

Abstract

In order to protect the unique fauna of the Galapagos Islands, it is critical that we understand how and when parasites spread throughout the archipelago. There are several key components of host-parasite dynamics that influence parasite spread, including the basic reproductive rate of the parasite, host density, transmission mode, and host movement, among other factors. Host movement could be especially important in determining parasite spread in island systems like the Galapagos, because parasites are not always able to move larger distances unaided. Because some hosts (and vectors) show population genetic structure within the Galapagos Islands, we can make inferences about potential parasite spread from knowledge of host population connectivity. In this chapter, we review patterns of population connectivity in Galapagos vertebrates (hosts), arthropod vectors, and parasites, focusing on population genetic studies. Hosts with little to no population genetic structure and high rates of inferred movement (e.g., Galapagos fur seal, Galapagos penguin, great frigatebird, Galapagos dove, small ground finch, small tree finch, large tree finch) are the most likely to spread parasites. More research is needed on parasite spread, particularly studies that simultaneously estimate population connectivity of both host (or multiple hosts, including vectors) and parasite.

Keywords

Connectivity Population genetic structure Parasite dispersal Endemism Adaptation Parasite spread 

References

  1. Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions I. Regulatory processes. J Anim Ecol 47:219–247CrossRefGoogle Scholar
  2. Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361–367PubMedCrossRefGoogle Scholar
  3. Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Phil Trans R Soc Lond B Biol Sci 291:452–491Google Scholar
  4. Anderson RM, May RM (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil Trans R Soc Lond B Biol Sci 314:533–570CrossRefGoogle Scholar
  5. Anderson JF, Andreadis TG, Vossbrinck CR, Tirrell S, Wakem EM, French RA, Garmendia AE, Van Kruiningen HJ (1999) Isolation of West Nile virus from mosquitoes, crows, and a Cooper’s hawk in Connecticut. Science 286:2331–2332PubMedCrossRefGoogle Scholar
  6. Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63PubMedCrossRefGoogle Scholar
  7. Barrett LG, Thrall PH, Burdon JJ, Linde CC (2008) Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol Evol 23:678–685PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bartlett MS (1960) The critical community size for measles in the United States. J R Soc Stat Soc A 123:37–44CrossRefGoogle Scholar
  9. Bataille A, Cunningham AA, Cedeño V, Patiño L, Constantinou A, Kramer LD, Goodman SJ (2009a) Natural colonization and adaptation of a mosquito species in Galapagos and its implications for disease threats to endemic wildlife. Proc Natl Acad Sci U S A 106:10230–10235PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bataille A, Cunningham AA, Cedeño V, Cruz M, Eastwood G, Fonseca DM, Causton CE, Azuero R, Loayza J, Martinez JD, Goodman SJ (2009b) Evidence for regular ongoing introductions of mosquito disease vectors into the Galapagos Islands. Proc Biol Sci 276:3769–3775PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bataille A, Cunningham AA, Cruz M, Cedeño V, Goodman SJ (2010) Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands. Mol Ecol 19:4491–4504PubMedCrossRefGoogle Scholar
  12. Bataille A, Cunningham AA, Cruz M, Cedeño V, Goodman SJ (2011) Adaptation, isolation by distance and human-mediated transport determine patterns of gene flow among populations of the disease vector Aedes taeniorhynchus in the Galapagos Islands. Infect Genet Evol 11:1996–2003PubMedCrossRefGoogle Scholar
  13. Bataille A, Fournie G, Cruz M, Cedeno V, Parker PG, Cunningham AA, Goodman SJ (2012) Host selection and parasite infection in Aedes taeniorhynchus, endemic disease vector in the Galapagos Islands. Infection, Genetics and Evolution 12:1831–1841. https://doi.org/10.1016/j.meegid.2012.07.019 PubMedCrossRefGoogle Scholar
  14. Bello FJ, Herrera GA, Sandoval JC, Escovar JE, Ruíz-García M, del Pilar CM (2005) Colonization of Ochlerotatus taeniorhynchus from Riohacha, Colombia. J Am Mosq Control Assoc 21:28–32PubMedCrossRefGoogle Scholar
  15. Bollmer JL, Whiteman NK, Cannon MD, Bednarz JC, de Vries T, Parker PG, Steenhof K (2005) Population genetics of the Galapagos hawk (Buteo galapagoensis): genetic monomorphism within isolated populations. Auk 122:1210–1224CrossRefGoogle Scholar
  16. Chambers SM (1991) Biogeography of galapagos land snails. In: James MJ (ed) Galapagos marine invertebrates. Plenum, New York, NYGoogle Scholar
  17. Chaves JA, Parker PG, Smith TB (2012) Origin and population history of a recent colonizer, the yellow warbler in Galapagos and Cocos Islands. J Evol Biol 25:509–521PubMedCrossRefGoogle Scholar
  18. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious disease of wildlife–threats to biodiversity and human health. Science 287:443–449PubMedCrossRefGoogle Scholar
  19. Deem SL, Merkel J, Ballweber L, Vargas FH, Cruz MB, Parker PG (2010) Exposure to Toxoplasma gondii in Galapagos penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. J Wildl Dis 46:1005–1011PubMedCrossRefGoogle Scholar
  20. Deem SL, Rivera-Parra JL, Parker PG (2012) Health evaluation of Galapagos hawks (Buteo galapagoensis) on Santiago island, Galapagos. J Wildl Dis 48:39–46PubMedCrossRefGoogle Scholar
  21. Dobson AP, May RM (1986) Patterns of invasions by pathogens and parasites. In: Mooney HA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer Verlag, New York, pp 58–76CrossRefGoogle Scholar
  22. Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Phil Trans R Soc Lond B Biol Sci 356:1001–1012CrossRefGoogle Scholar
  23. Dudaniec RY, Kleindorfer S, Fessl B (2006) Effects of the parasitic flies Philornis (Diptera: Muscidae) on birds. Emu 106:12–20CrossRefGoogle Scholar
  24. Dudaniec RY, Gardner MG, Donnellan S, Kleindrfer S (2008) Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago. BMC Ecol 8:13PubMedPubMedCentralCrossRefGoogle Scholar
  25. Duffie C, Glenn TC, Vargas FH, Parker PG (2009) Genetic structure within and between island populations of the flightless cormorant (Phalacrocorax harrisi). Mol Ecol 18:2103–2111PubMedCrossRefGoogle Scholar
  26. Epler B (2007) Tourism, the economy and population growth and conservation in galapagos. Presentada a la Fundación Charles Darwin, Puerto AyoraGoogle Scholar
  27. Farrington HL, Lawson LP, Clark CM, Petren K (2014) The evolutionary history of Darwin’s finches: speciation, gene flow, and introgression in a fragmented landscape. Evolution 68:2932–2944PubMedCrossRefGoogle Scholar
  28. Fessl B, Tebbich S (2002) Philornis downsi–a recently discovered parasite on the Galapagos archipelago–a threat for Darwin’s finches? Ibis 144:445–451CrossRefGoogle Scholar
  29. Fournié G, Goodman SJ, Cruz M, Cedeño V, Vélez A, Patiño L, Millins C, Gibbons LM, Fox MT, Cunningham AA (2015) Biogeography of parasitic nematode communities in the Galápagos giant tortoise: implications for conservation management. PLoS One 10:e0135684PubMedPubMedCentralCrossRefGoogle Scholar
  30. Franco A, Hendriksen RS, Lorenzetti S, Onorati R, Gentile G, Dell’Omo G, Aarestrup FM, Battisti A (2011) Characterization of Salmonella occurring at high prevalence in a population of the land iguana Conolophus subcristatus in Galapagos Islands, Ecuador. PLoS One 6:e23147PubMedPubMedCentralCrossRefGoogle Scholar
  31. Friesen VL, González JA, Cruz-Delgado F (2006) Population genetic structure and conservation of the Galapagos petrel (Pterodroma phaeopygia). Conserv Genet 7:105–115CrossRefGoogle Scholar
  32. Gaither MR, Aeby G, Vignon M, Meguro Y, Rigby M, Runyon C, Toonen RJ, Wood CL, Bowen BW (2013) An invasive fish and the time-lagged spread of its parasite across the Hawaiian archipelago. PLoS One 8:e56940PubMedPubMedCentralCrossRefGoogle Scholar
  33. Geist DJ (1996) On the emergence and submergence of the Galapagos Islands. Notícias de Galápagos 56:5–9Google Scholar
  34. Geist DJ, Snell H, Snell H, Goddard C, Kurz MD (2014) A paleogeographic model of the Galapagos Islands and biogeographical and evolutionary implications. In: Harpp SK, Mittelstaedt E, d’Ozouville N, Graham DW (eds) The Galapagos: a natural laboratory for the earth sciences. John Wiley & Sons, Inc, Hoboken, New Jersey, USAGoogle Scholar
  35. Goff ML, van Riper IIIC (1980) Distribution of mosquitoes (Diptera: Culicidae) on the east flank of Mauna Loa Volcano, Hawaii. Pac Insects 22:178–188Google Scholar
  36. Gottdenker NL, Walsh T, Vargas H, Merkel J, Jiménez GU, Miller RE, Dailey M, Parker PG (2005) Assessing the risks of introduced chicken and their pathogens to native birds in the Galapagos archipelago. Biol Conserv 126:429–439CrossRefGoogle Scholar
  37. Harris MP (1979) Population dynamics of the flightless cormorant (Nannopterum harrisi). Ibis 121:135–146CrossRefGoogle Scholar
  38. Hoeck PEA, Bollmer JL, Parker PG, Keller LF (2010) Differentiation with drift: a spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.) Phil Trans R Soc B 365:1127–1138PubMedPubMedCentralCrossRefGoogle Scholar
  39. Huff CG, Bloom W (1935) A malaria parasite infecting all blood and blood forming cells of birds. J Infect Dis 57:315–336CrossRefGoogle Scholar
  40. Huff CG (1951) Observations on the pre-erythrocytic stages of P. relictum, P. cathemerium and P. gallinaceum in various birds. J Infect Dis 88:12–26CrossRefGoogle Scholar
  41. Huyvaert KP, Anderson DJ (2004) Limited dispersal by Nazca boobies, Sula granti. J Avian Biol 35:46–52CrossRefGoogle Scholar
  42. Ishtiaq F, Clegg SM, Phillimore AB, Black RA, Owens IPF, Sheldon BC (2010) Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. J Biogeogr 37:120–132CrossRefGoogle Scholar
  43. Jordan MA, Snell HL (2008) Historical fragmentation of islands and genetic drift in populations of Galapagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 17:1224–1237PubMedCrossRefGoogle Scholar
  44. Källén A, Arcuri P, Murray JD (1985) A simple model for the spatial spread and control of rabies. J Theor Biol 116:377–393PubMedCrossRefGoogle Scholar
  45. Kerlinger P (1985) Water-crossing behavior of raptors during migration. Wilson Bull 97:109–113Google Scholar
  46. Kleindorfer S, Custance G, Peters KJ, Dudaniec RY, O’Connor JA (2014) Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr Zool 60:542–550CrossRefGoogle Scholar
  47. Koop JAH, DeMatteo KE, Parker PG, Whiteman NK (2014) Birds are islands for parasites. Biol Lett 10:20140255PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lankau EW, Cruz Bedon L, Mackie RI (2012) Salmonella strains isolated from Galapagos iguanas show spatial structuring of serovar and genomic diversity. PLoS One 7:e37302PubMedPubMedCentralCrossRefGoogle Scholar
  49. LaPointe DA (2000) Avian malaria in Hawaii: the distribution, ecology and vector potential of forest-dwelling mosquitoes. Ph.D. dissertation, University of Hawaii, Manoa. Honolulu, HIGoogle Scholar
  50. Levin II, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195CrossRefGoogle Scholar
  51. Levin II, Valkiunas G, Santiago-Alarcon D, Lee Cruz L, Iezhova TA, O’Brien SL, Hailer F, Dearborn D, Schreiber EA, Fleischer RC, Ricklefs RE, Parker PG (2011) Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int J Parasitol 41:1019–1027PubMedCrossRefGoogle Scholar
  52. Levin II, Parker PG (2012a) Philopatry drives genetic differentiation in an island archipelago: comparative population genetics of Galapagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor). Ecol Evol 2:2775–2787PubMedPubMedCentralCrossRefGoogle Scholar
  53. Levin II, Parker PG (2012b) Prevalence of Haemoproteus iwa in Galapagos great frigatebirds (Fregata minor) and their obligate fly ectoparasite (Olfersia spinifera). J Parasitol 98:924–929PubMedCrossRefGoogle Scholar
  54. Levin II, Valkiunas G, Iezhova TA, O’Brien SL, Parker PG (2012) Novel Haemoproteus species (Haemosporida: Haemoproteidae) from the swallow-tailed gull (Lariidae), with remarks on the host range of hippoboscid-transmitted avian Hemoproteids. J Parasitol 98:847–854PubMedCrossRefGoogle Scholar
  55. Levin II, Parker PG (2013) Comparative host-parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds. Parasitology 140:1061–1069PubMedCrossRefGoogle Scholar
  56. Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jiménez-Uzcátegui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiunas G, Parker PG (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377PubMedCrossRefGoogle Scholar
  57. Levin II, Parker PG (2014) Infection with Haemoproteus iwa affects vector movement in a hippoboscid fly–frigatebird system. Mol Ecol 23:947–953PubMedCrossRefGoogle Scholar
  58. Levy JK, Crawford PC, Lappin MR, Dubovi EJ, Levy MG, Alleman R, Tucker SJ, Clifford EL (2008) Infectious diseases of dogs and cats on Isabela Island, Galapagos. J Vet Intern Med 22:60–65PubMedCrossRefGoogle Scholar
  59. Long JL (1981) Introduced birds of the world. Universe Books, New York, NYGoogle Scholar
  60. Lopes F, Hoffman JI, Valiati VH, Bonatto SL, Wolf JBW, Trillmich F, Oliveira LR (2015) Fine-scale matrilineal population structure in the Galapagos fur seal and its implications for conservation management. Conserv Genet 16:1099–1113CrossRefGoogle Scholar
  61. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJGoogle Scholar
  62. MacLeod A, Rodríguez A, Vences M, Orozco-terWengel P, García C, Trillmich R, Gentile G, Caccone A, Quezada G, Steinfartz S (2015) Hybridization masks speciation in the evolutionary history of the Galapagos marine iguana. Proc R Soc B 282:20150425PubMedPubMedCentralCrossRefGoogle Scholar
  63. Marfin AA, Peterson LR, Eidson M, Miller J, Hadler J, Farello C, Werner B, Campbell GL, Layton M, Smith P, Bresnitz E, Cartter M, Scaletta J, Obiri G, Bunning M, Craven RC, Roehrig JT, Julian KG, Hinten SR, Gubler DJ, ArboNET Cooperative Surveillance Group (2001) Widespread West Nile virus activity, eastern United States, 2000. Emerg Infect Dis 7:730–735PubMedPubMedCentralCrossRefGoogle Scholar
  64. Merkel J, Jones HI, Whiteman NK, Gottdenker N, Vargas H, Travis EK, Miller RE, Parker PG (2007) Microfilariae in Galápagos penguins (Spehniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi): genetics, morphology, and prevalence. J Parasitol 93:495–503PubMedCrossRefGoogle Scholar
  65. Nieberding C, Morand S, Libois R, Michaux JR (2006) Parasites and the island syndrome: the colonization of the western Mediterranean islands by Heligmosomoides polygyrus (Dujardin, 1845). J Biogeogr 33:1212–1222CrossRefGoogle Scholar
  66. Nietlisback P, Wandeler P, Parker PG, Grant PR, Grant BR, Keller LF, Hoeck PEA (2013) Hybrid ancestry of an island subspecies of Galapagos mockingbird explains discordant gene trees. Mol Phylogenet Evol 69:581–592CrossRefGoogle Scholar
  67. Nims BD, Vargas FH, Merkel J, Parker PG (2008) Low genetic diversity and lack of population structure in the endangered Galápagos penguin (Spheniscus mendiculus). Conserv Genet 9:1413–1420CrossRefGoogle Scholar
  68. Padilla LR, Whiteman NK, Merkel J, Huyvaert KP, Parker PG (2006) Health assessment of seabirds on Genovesa Island, Galapagos. Ornithol Monogr 60:86–97CrossRefGoogle Scholar
  69. Parent CE, Caccone A, Petren K (2008) Colonization and diversification of Galapagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Phil Trans R Soc Lond B Biol Sci 363:3347–3361CrossRefGoogle Scholar
  70. Parent CE, Crespi BJ (2006) Sequential colonization and diversification of Galapagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60:2311–2328PubMedGoogle Scholar
  71. Parker PG, Buckles EL, Farrington H, Petren K, Whiteman NK, Ricklefs RE, Bollmer JL, Jimenez-Uzcategui G (2011) 110 years of Avipoxvirus in the Galapagos Islands. PLoS One 6:e15989PubMedPubMedCentralCrossRefGoogle Scholar
  72. Patton JL (1984) Genetical processes in the Galapagos. Biol J Linn Soc 21:97–111CrossRefGoogle Scholar
  73. Peck SB (1994) Aerial dispersal of insects between and to islands in the Galápagos archipelago, Ecuador. Ann Ent Soc Amer 87:218–224CrossRefGoogle Scholar
  74. Peck SB (2001) Smaller orders of insects of the Galapagos Islands, Ecuador : evolution, ecology, and diversity. NRC Research Press, Ottawa, CanadaGoogle Scholar
  75. Peck SB (2006) The beetles of the Galapagos Islands, Ecuador : evolution, ecology, and diversity (Insecta : Coleoptera). NRC Research Press, Ottawa, CanadaGoogle Scholar
  76. Pérez-Rodríguez A, Ramírez A, Richardson DS, Pérez-Tris J (2013) Evolution of parasite island syndromes without long-term host population isolation: parasite dynamics in Macaronesian blackcaps Sylvia atricapilla. Global Evol Biogeogr 22:1271–1281Google Scholar
  77. Pergams ORW, Lacy RC, Ashley MV (2000) Conservation and management of Anacapa Island deer mice. Conserv Biol 14:819–832CrossRefGoogle Scholar
  78. Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches : the role of peripheral isolation. Mol Ecol 14:2943–2957PubMedCrossRefGoogle Scholar
  79. Poulakakis N, Glaberman S, Russello M, Beheregaray LB, Ciofi C, Powell JR, Caccon A (2008) Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise. Proc Natl Acad Sci U S A 105:15464–15469PubMedPubMedCentralCrossRefGoogle Scholar
  80. Poulakakis N, Russello M, Geist D, Caccone A (2012) Unravelling the peculiarities of island life: vicariance, dispersal and the diversification of the extinct and extant giant Galapagos tortoises. Mol Ecol 21:160–173PubMedCrossRefGoogle Scholar
  81. Provost MW (1951) The occurrence of salt marsh mosquitoes in the interior of Florida. Fla Entomol 34:48–53CrossRefGoogle Scholar
  82. Roque Albelo L, Berg M, Galarza M (2006) “Polizontes peligrosos”, dispersion de insectos entre las Islas Galapagos en barcos de turismo. Research report. Charles Darwin Foundation, Puerto Ayora, GalapagosGoogle Scholar
  83. Santiago-Alarcon D, Tanksley S, Parker PG (2006) Morphological variation and genetic structure of Galapagos dove (Zenaida galapagoensis) populations: issues in conservation for the Galapagos bird fauna. Wilson J Ornithol 118:194–207CrossRefGoogle Scholar
  84. Santiago-Alarcon D, Outlaw DC, Ricklefs RE, Parker PG (2010) Phylogenetic relationships of haemosporidian parasites in new world Columbiformes, with emphasis on the endemic Galapagos dove. Int J Parasitol 40:463–470PubMedCrossRefGoogle Scholar
  85. Siers SR, Merkel J, Bataille A, Vargas FH, Parker PG (2010) Ecological correlates of microfilarial prevalence in endangered Galapagos birds. J Parasitol 96:259–272PubMedCrossRefGoogle Scholar
  86. Smith KF, Carpenter SM (2006) Potential spread of introduced black rate (Rattus rattus) parasites to endemic deer mice (Peromyscus maniculatus) on the California Channel islands. Divers Distrib 12:742–748CrossRefGoogle Scholar
  87. Štefka J, Hoeck PEA, Keller LF, Smith VS (2011) A hitchhikers guide to the Galapagos: co-phylogeography of Galapagos mockingbirds and their parasites. BMC Evol Biol 11:284PubMedPubMedCentralCrossRefGoogle Scholar
  88. Taylor SA, Maclagan L, Anderson DJ, Friesen VL (2011) Could specialization to cold-water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. J Biogeogr 38:883–893CrossRefGoogle Scholar
  89. Telford SR Jr, Wozniak EJ, Butler JF (2001) Haemogregarine specificity in two communities of Florida snakes, with descriptions of six new species of Hepatozoon (Apicomplexa: Hepatozoidae) and a possible species of Haemogregarina (Apicomplexa: Haemogregarinidae). J Parasitol 87:890–905PubMedCrossRefGoogle Scholar
  90. Thiel T, Whiteman NK, Tirapé A, Baquero MI, Cedeño T, Walsh T, Jiménez-Uzcátegui G, Parker PG (2006) Characterization of canarypox-like viruses infection endemic birds in the Galapagos islands. J Wildl Dis 41:342–353CrossRefGoogle Scholar
  91. Tindle R (1984) The evolution of breeding strategies in the flightless cormorant (Nannapterum harrisi). Biol J Linn Soc 21:157–164CrossRefGoogle Scholar
  92. Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190CrossRefGoogle Scholar
  93. Tzika AC, Rosa SFP, Fabiani A, Snell HL, Snell HM, Marquez C, Tapia W, Rassmann K, Gentile G, Milinkovitch MC (2008) Population genetics of Galapagos land iguana (genus Conolophus) remnant populations. Mol Ecol 17:4943–4952PubMedCrossRefGoogle Scholar
  94. Valkiunas G, Santiago-Alarcon D, Levin II, Iezhova TA, Parker PG (2010) A new Haemoproteus species (Haemosporida: Haemoproteidae) from the endemic Galapagos dove, Zenaida galapagoensis, with remarks on the parasite distribution, vectors, and molecular diagnostics. J Parsitol 96:783–792CrossRefGoogle Scholar
  95. Valle CA (1995) Effective population size and demography of the rare flightless Galapagos cormorant. Ecol Appl 5:601–617CrossRefGoogle Scholar
  96. Vargas H, Steinfurth A, Larrea C, Jimenez G, Llerena W (2005) Penguin and cormorant census 2005. Report to the Charles Darwin Research Station and the Galapagos National Park Service. Charles Darwin Research Station, Puerto Ayora, Santa Cruz, Galapagos, pp 1–35Google Scholar
  97. Verant ML, d’Ozouville N, Parker PG, Shapiro K, VanWormer E, Deem SL (2014) Attempted detection of Toxoplasma gondii oocysts in environmental waters using a simple approach to evaluate the potential for waterborne transmission in the Galápagos Islands, Ecuador. Ecohealth 11:207–214PubMedCrossRefGoogle Scholar
  98. Warham J (1990) The petrels: their ecology and breeding systems. Academic Press, New York, NYGoogle Scholar
  99. Warner RE (1986) The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70:101–120CrossRefGoogle Scholar
  100. Werner R, Hoernle K, van den Bogaar P, Ranero C, von Huene R, Korich D (1999) Drowned 14-m.Y.-old Galapagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27:499–502CrossRefGoogle Scholar
  101. Wheeler E, Cann IKO, Mackie R (2011) Genomic fingerprinting and serotyping of Salmonella from Galapagos iguanas demonstrates island differences in strain diversity. Environ Microbiol Rep 3:166–173PubMedCrossRefGoogle Scholar
  102. Whiteman NK, Sánchez P, Merkel J, Klompen H, Parker PG (2006a) Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. J Parasitol 92:1218–1228PubMedCrossRefGoogle Scholar
  103. Whiteman NK, Matson KD, Bollmer JL, Parker PG (2006b) Disease ecology in the Galapagos hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies. Proc R Soc B 273:797–804PubMedCrossRefGoogle Scholar
  104. Whiteman NK, Kimball RT, Parker PG (2007) Co-phylogeography and comparative population genetics of the threatened Galápagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Mol Ecol 16:4759–4773PubMedCrossRefGoogle Scholar
  105. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST not equal to 1/(4Nm + 1). Heredity 82:117–125PubMedCrossRefGoogle Scholar
  106. Wolf JBW, Harrod C, Brunner S, Salazar S, Trillmich F, Tautz D (2008) Tracing early stages of species differentiation: ecological, morphological and genetic divergence of Galapagos sea lion populations. BMC Evol Biol 8:150PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of BiologyAgnes Scott CollegeDecaturUSA
  2. 2.CIRAD, UMR ASTREMontpellierFrance

Personalised recommendations