Advertisement

Classification of Macular Hemorrhages

  • Silvia BoppEmail author
  • Alireza Mirshahi
Chapter

Abstract

Several therapeutic strategies are available for the treatment of submacular hemorrhages. The key points for choosing the appropriate therapy are (1) the underlying pathology, commonly a choroidal neovascular membrane (CNVM), especially in AMD patients, followed by non-AMD-related CNVM and retinal arterial macroaneurysms (RAM) and (2) the extent and location of the hemorrhage including size, thickness, and location in relation to the fovea and the layer in which the blood is present. We suggest a classification to be used for clinical decision-making and also in future studies when comparing efficacy of different treatment strategies for macular hemorrhage. This classification considers the size and extent, thickness, and the retinal layers involved.

Keywords

Macular hemorrhage Classification Size Sub-RPE Subretinal Age-related macular degeneration Retinal macroaneurysm 

References

  1. 1.
    Bopp S. [Subretinal hemorrhage. Natural course and staging]. Ophthalmologe. 2012;109(7):635–43.CrossRefGoogle Scholar
  2. 2.
    Hohn F, Mirshahi A, Hattenbach LO. [Combined intravitreal injection of bevacizumab and SF6 gas for treatment of submacular hemorrhage secondary to age-related macular degeneration]. Ophthalmologe. 2010;107(4):328–32.Google Scholar
  3. 3.
    Nakamura H, Hayakawa K, Sawaguchi S, Gaja T, Nagamine N, Medoruma K. Visual outcome after vitreous, sub-internal limiting membrane, and/or submacular hemorrhage removal associated with ruptured retinal arterial macroaneurysms. Graefes Arch Clin Exp Ophthalmol. 2008;246(5):661–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Agostini HT, Bopp S, Feltgen N. [Prognosis and treatment of macular bleeding in neovascular age-related macular degeneration]. Ophthalmologe. 2017;114(5):476–80.Google Scholar
  5. 5.
    Avery RL, Fekrat S, Hawkins BS, Bressler NM. Natural history of subfoveal subretinal hemorrhage in age-related macular degeneration. Retina. 1996;16(3):183–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Scupola A, Coscas G, Soubrane G, Balestrazzi E. Natural history of macular subretinal hemorrhage in age-related macular degeneration. Ophthalmologica. 1999;213(2):97–102.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration? Retina. 2010;30(9):1333–49.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Glatt H, Machemer R. Experimental subretinal hemorrhage in rabbits. Am J Ophthalmol. 1982;94(6):762–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Stanescu-Segall D, Balta F, Jackson TL. Submacular hemorrhage in neovascular age-related macular degeneration: a synthesis of the literature. Surv Ophthalmol. 2016;61(1):18–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dimopoulos S, Leitritz MA, Ziemssen F, Voykov B, Bartz-Schmidt KU, Gelisken F. Submacular predominantly hemorrhagic choroidal neovascularization: resolution of bleedings under anti-VEGF therapy. Clin Ophthalmol. 2015;9:1537–41.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fassbender JM, Sherman MP, Barr CC, Schaal S. Tissue plasminogen activator for subfoveal hemorrhage due to age-related macular degeneration: comparison of 3 treatment modalities. Retina. 2016;36(10):1860–5.CrossRefPubMedGoogle Scholar
  12. 12.
    De Maeyer K, Van Ginderdeuren R, Postelmans L, Stalmans P, Van Cealster J. Sub-inner limiting membrane haemorrhage: causes and treatment with vitrectomy. Br J Ophthalmol. 2007;91(7):869–72.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fang IM, Lin YC, Yang CH, Yang CM, Chen MS. Effects of intravitreal gas with or without tissue plasminogen activator on submacular haemorrhage in age-related macular degeneration. Eye (Lond). 2009;23(2):397–406.CrossRefGoogle Scholar
  14. 14.
    Chang W, Garg SJ, Maturi R, Hsu J, Sivalingam A, Gupta SA, et al. Management of thick submacular hemorrhage with subretinal tissue plasminogen activator and pneumatic displacement for age-related macular degeneration. Am J Ophthalmol. 2014;157(6):1250–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Stopa M, Kociecki J. [Macular translocation with 360 retinectomy for submacular hemorrhage in age related macular degeneration]. Klin Oczna. 2009;111(1–3):50–5.Google Scholar
  16. 16.
    Fine HF, Iranmanesh R, Del Priore LV, Barile GR, Chang LK, Chang S, et al. Surgical outcomes after massive subretinal hemorrhage secondary to age-related macular degeneration. Retina. 2010;30(10):1588–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Hochman MA, Seery CM, Zarbin MA. Pathophysiology and management of subretinal hemorrhage. Surv Ophthalmol. 1997;42(3):195–213.CrossRefGoogle Scholar
  18. 18.
    Gaudreault J, Fei D, Beyer JC, Ryan A, Rangell L, Shiu V, et al. Pharmacokinetics and retinal distribution of ranibizumab, a humanized antibody fragment directed against VEGF-A, following intravitreal administration in rabbits. Retina. 2007;27(9):1260–6.CrossRefGoogle Scholar
  19. 19.
    Sacu S, Stifter E, Vecsei-Marlovits PV, Michels S, Schutze C, Prunte C, et al. Management of extensive subfoveal haemorrhage secondary to neovascular age-related macular degeneration. Eye (Lond). 2009;23(6):1404–10.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eye Clinic UniversitätsalleeBremenGermany
  2. 2.Dardenne Eye HospitalBonnGermany

Personalised recommendations