Systems of Sets of Lengths: Transfer Krull Monoids Versus Weakly Krull Monoids

  • Alfred Geroldinger
  • Wolfgang A. Schmid
  • Qinghai Zhong
Chapter

Abstract

Transfer Krull monoids are monoids which allow a weak transfer homomorphism to a commutative Krull monoid, and hence the system of sets of lengths of a transfer Krull monoid coincides with that of the associated commutative Krull monoid. We unveil a couple of new features of the system of sets of lengths of transfer Krull monoids over finite abelian groups G, and we provide a complete description of the system for all groups G having Davenport constant D(G) = 5 (these are the smallest groups for which no such descriptions were known so far). Under reasonable algebraic finiteness assumptions, sets of lengths of transfer Krull monoids and of weakly Krull monoids satisfy the Structure Theorem for Sets of Lengths. In spite of this common feature we demonstrate that systems of sets of lengths for a variety of classes of weakly Krull monoids are different from the system of sets of lengths of any transfer Krull monoid.

Keywords

Transfer Krull monoids Weakly Krull monoids Sets of lengths Zero-sum sequences 

Notes

Acknowledgements

This work was supported by the Austrian Science Fund FWF, Project Number P28864-N35, and the ANR project Caesar, project number ANR-12-BS01-0011

References

  1. 1.
    Amos, J., Chapman, S.T., Hine, N., Paixão, J.: Sets of lengths do not characterize numerical monoids. Integers 7, Paper A50, 8p. (2007)Google Scholar
  2. 2.
    Anderson, D.D., Anderson, D.F., Zafrullah, M.: Atomic domains in which almost all atoms are prime. Commun. Algebra 20, 1447–1462 (1992)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Anderson, D.D., Mott, J., Zafrullah, M.: Finite character representations for integral domains. Boll. Unione Mat. Ital. 6, 613–630 (1992)MATHMathSciNetGoogle Scholar
  4. 4.
    Bachman, D., Baeth, N., McQueen, A.: Factorizations of upper triangular Toeplitz matrices. Boll. Unione Mat. Ital. 8, 131–150 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Baeth, N.R., Smertnig, D.: Factorization theory: from commutative to noncommutative settings. J. Algebra 441, 475–551 (2015)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Baginski, P., Chapman, S.T., Crutchfield, C., Kennedy, K.G., Wright, M.: Elastic properties and prime elements. Results Math. 49, 187–200 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Baginski, P., Chapman, S.T., Holden, M., Moore, T.: Asymptotic elasticity in atomic monoids. Semigroup Forum 72, 134–142 (2006)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Barron, T., O’Neill, C., Pelayo, R.: On the set of elasticities in numerical monoids. Semigroup Forum 94, 37–50 (2017)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bowles, C., Chapman, S.T., Kaplan, N., Reiser, D.: On delta sets of numerical monoids. J. Algebra Appl. 5, 695–718 (2006)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chang, G.W., Smertnig, D.: Factorization in the self-idealization of a PID. Boll. Unione Mat. Ital. IX,6(2), 363–377 (2013)Google Scholar
  11. 11.
    Chapman, S.T., Holden, M., Moore, T.: Full elasticity in atomic monoids and integral domains. Rocky Mt. J. Math. 36, 1437–1455 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Chapman, S.T., Gotti, F., Pelayo, R.: On delta sets and their realizable subsets in Krull monoids with cyclic class groups. Colloq. Math. 137, 137–146 (2014)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Chapman, S.T., Fontana, M., Geroldinger, A., Olberding, B. (eds.): Multiplicative Ideal Theory and Factorization Theory. Proceedings in Mathematics and Statistics, vol. 170. Springer, Berlin (2016)Google Scholar
  14. 14.
    Colton, S., Kaplan, N.: The realization problem for delta sets of numerical monoids. J. Commut. Algebra. 9, 313–339 (2017)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Frisch, S.: A construction of integer-valued polynomials with prescribed sets of lengths of factorizations. Monatsh. Math. 171, 341–350 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Geroldinger, A.: Additive group theory and non-unique factorizations. In: Geroldinger, A., Ruzsa, I. (eds.) Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics CRM, pp. 1–86. Birkhäuser, Barcelona (2009)CrossRefGoogle Scholar
  17. 17.
    Geroldinger, A.: Sets of lengths. Am. Math. Monthly 123, 960–988 (2016)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, vol. 278. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  19. 19.
    Geroldinger, A., Roitman, M.: The arithmetic of one-dimensional local domains. manuscript.Google Scholar
  20. 20.
    Geroldinger, A., Schmid, W.A.: The system of sets of lengths in Krull monoids under set addition. Rev. Mat. Iberoam. 32, 571–588 (2016)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Geroldinger, A., Schmid, W.A.: A characterization of class groups via sets of lengths. http://arxiv.org/abs/1503.04679
  22. 22.
    Geroldinger, A., Yuan, P.: The set of distances in Krull monoids. Bull. Lond. Math. Soc. 44, 1203–1208 (2012)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Geroldinger, A., Zhong, Q.: A characterization of class groups via sets of lengths II. J. Théor. Nombres Bordx. 29, 327–346 (2017)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Geroldinger, A., Zhong, Q.: Long sets of lengths with maximal elasticity. Canadian J. Math. https://arxiv.org/abs/1706.06907
  25. 25.
    Geroldinger, A., Zhong, Q.: The set of minimal distances in Krull monoids. Acta Arith. 173, 97–120 (2016)MATHMathSciNetGoogle Scholar
  26. 26.
    Geroldinger, A., Hassler, W., Lettl, G.: On the arithmetic of strongly primary monoids. Semigroup Forum 75, 567–587 (2007)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Geroldinger, A., Grynkiewicz, D.J., Schaeffer, G.J., Schmid, W.A.: On the arithmetic of Krull monoids with infinite cyclic class group. J. Pure Appl. Algebra 214, 2219–2250 (2010)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Geroldinger, A., Grynkiewicz, D.J., Yuan, P.: On products of k atoms II. Mosc. J. Comb. Number Theory 5, 73–129 (2015)MATHMathSciNetGoogle Scholar
  29. 29.
    Geroldinger, A., Kainrath, F., Reinhart, A.: Arithmetic of seminormal weakly Krull monoids and domains. J. Algebra 444, 201–245 (2015)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Halter-Koch, F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory. Marcel Dekker, New York (1998)MATHGoogle Scholar
  31. 31.
    Kainrath, F.: Factorization in Krull monoids with infinite class group. Colloq. Math. 80, 23–30 (1999)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence (2001)Google Scholar
  33. 33.
    Schmid, W.A.: A realization theorem for sets of lengths. J. Number Theory 129, 990–999 (2009)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Smertnig, D.: Factorizations in bounded hereditary noetherian prime rings. http://arxiv.org/abs/1605.09274
  35. 35.
    Smertnig, D.: Sets of lengths in maximal orders in central simple algebras. J. Algebra 390, 1–43 (2013)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Zhong, Q.: Sets of minimal distances and characterizations of class groups of Krull monoids. Ramanujan J. (2017). doi:10.1007/s11139-016-9873-2Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alfred Geroldinger
    • 1
  • Wolfgang A. Schmid
    • 2
    • 3
  • Qinghai Zhong
    • 1
  1. 1.Institute for MathematicsUniversity of GrazGrazAustria
  2. 2.Laboratoire Analyse, Géométrie et Applications (LAGA, UMR 7539, CNRS)COMUE Université Paris LumièresSaint-Denis cedexFrance
  3. 3.Université Paris 13Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations