Advertisement

Stabilization of (G)EIM in Presence of Measurement Noise: Application to Nuclear Reactor Physics

  • J. P. ArgaudEmail author
  • B. Bouriquet
  • H. Gong
  • Y. Maday
  • O. Mula
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

The Empirical Interpolation Method (EIM) and its generalized version (GEIM) can be used to approximate a physical system by combining data measured from the system itself and a reduced model representing the underlying physics. In presence of noise, the good properties of the approach are blurred in the sense that the approximation error no longer converges but even diverges. We propose to address this issue by a least-squares projection with constrains involving some a priori knowledge of the geometry of the manifold formed by all the possible physical states of the system. The efficiency of the approach, which we will call Constrained Stabilized GEIM (CS-GEIM), is illustrated by numerical experiments dealing with the reconstruction of the neutron flux in nuclear reactors. A theoretical justification of the procedure will be presented in future works.

References

  1. 1.
    Y. Maday, O. Mula, A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, in Analysis and Numerics of Partial Differential Equations, ed. by F. Brezzi, P.C. Franzone, U. Gianazza, G. Gilardi. Springer INdAM Series, vol. 4 (Springer Milan, Heidelberg, 2013), pp. 221–235Google Scholar
  2. 2.
    Y. Maday, A.T. Patera, J.D. Penn, M. Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Methods Eng. 102(5), 933–965 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Y. Maday, O. Mula, G. Turinici, Convergence analysis of the generalized empirical interpolation method. SIAM J. Numer. Anal. 54(3), 1713–1731 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    H. Gong, J.P. Argaud, B. Bouriquet, Y. Maday, The empirical interpolation method applied to the neutron diffusion equations with parameter dependence, in Proceedings of Physor (2016)Google Scholar
  5. 5.
    A. Hebert, Applied Reactor Physics (Presses inter Polytechnique, Montreal, 2009)Google Scholar
  6. 6.
    A. Cohen, R. DeVore, Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36, 1–12 (2015). dru066Google Scholar
  7. 7.
    J.P. Argaud, B. Bouriquet, H. Gong, Y. Maday, O. Mula, Sensor placement in nuclear reactors. Submitted paper (under review)Google Scholar
  8. 8.
    Computational Benchmark Problem Comitee for the Mathematics and Computation Division of the American Nuclear Society. Argonne Code Center: Benchmark problem book (1977)Google Scholar
  9. 9.
  10. 10.
    G. Theler, F.J. Bonetto, A. Clausse, Solution of the 2D IAEA PWR Benchmark with the neutronic code Milonga, in Actas de la Reunión Anual de la Asociación Argentina de Tecnología Nuclear, vol. XXXVIII (2011)Google Scholar
  11. 11.
    A. Sartori, D. Baroli, A. Cammi, D. Chiesa, L. Luzzi, R. Ponciroli, E. Previtali, M.E. Ricotti, G. Rozza, M. Sisti, Comparison of a modal method and a proper orthogonal decomposition approach for multi-group time-dependent reactor spatial kinetics. Ann. Nucl. Energy 71, 217–229 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Sartori, D. Baroli, A. Cammi, L. Luzzi, G. Rozza, A reduced order model for multi-group time-dependent parametrized reactor spatial kinetics, in 2014 22nd International Conference on Nuclear Engineering (American Society of Mechanical Engineers, New York, 2014), pp. V005T17A048–V005T17A048Google Scholar
  13. 13.
    Y. Maday, A.T. Patera, J.D. Penn, M. Yano, PBDW state estimation: noisy observations; configuration-adaptive background spaces, physical interpretations. ESAIM: Proc. Surv. 50, 144–168 (2015)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. P. Argaud
    • 1
    Email author
  • B. Bouriquet
    • 1
  • H. Gong
    • 1
  • Y. Maday
    • 2
    • 3
    • 4
  • O. Mula
    • 5
  1. 1.R&D, Électricité de FrancePalaiseauFrance
  2. 2.Labo. J.-L. LionsSorbonne Université, UPMC Univ Paris 06, UMR 7598ParisFrance
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.Division of Applied MathematicsBrown UniversityProvidenceUSA
  5. 5.CEREMADEPSL Research University, CNRS, UMR 7534, Université Paris-DauphineParisFrance

Personalised recommendations