Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows

  • D. MoxeyEmail author
  • C. D. Cantwell
  • G. Mengaldo
  • D. Serson
  • D. Ekelschot
  • J. Peiró
  • S. J. Sherwin
  • R. M. Kirby
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)


There is an increasing requirement from both academia and industry for high-fidelity flow simulations that are able to accurately capture complicated and transient flow dynamics in complex geometries. Coupled with the growing availability of high-performance, highly parallel computing resources, there is therefore a demand for scalable numerical methods and corresponding software frameworks which can deliver the next-generation of complex and detailed fluid simulations to scientists and engineers in an efficient way. In this article we discuss recent and upcoming advances in the use of the spectral/hp element method for addressing these modelling challenges. To use these methods efficiently for such applications, is critical that computational resolution is placed in the regions of the flow where it is needed most, which is often not known a priori. We propose the use of spatially and temporally varying polynomial order, coupled with appropriate error estimators, as key requirements in permitting these methods to achieve computationally efficient high-fidelity solutions to complex flow problems in the fluid dynamics community.



D.M. acknowledges support from the EU Horizon 2020 project ExaFLOW (grant 671571) and the PRISM project under EPSRC grant EP/L000407/1. D.S. is grateful for the support received from CNPq (grant 231787/2013–8) and FAPESP (grant 2012/23493-0). D.E. acknowledges support from the EU ITN project ANADE (grant PITN-GA-289428). S.J.S. acknowledges Royal Academy of Engineering support under their research chair scheme. R.M.K. acknowledges support from the US Army Research Office under W911NF1510222 (overseen by Dr. M. Coyle). Computing resources supported by the UK Turbulence Consortium (EPSRC grant EP/L000261/1) and the Imperial College HPC service.


  1. 1.
    C. Cantwell, S. Sherwin, R. Kirby, P. Kelly, From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Comput. Fluids 43(1), 23–28 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    C.D. Cantwell, S.J. Sherwin, R.M. Kirby, P.H.J. Kelly, From h to p efficiently: selecting the optimal spectral/hp discretisation in three dimensions. Math. Mod. Nat. Phenom. 6, 84–96 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. de Grazia, S. Yakovlev, J.E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, S.J. Sherwin, Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)CrossRefGoogle Scholar
  4. 4.
    L. Demkowicz, W. Rachowicz, P. Devloo, A fully automatic hp-adaptivity. J. Sci. Comput. 17(1), 117–142 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    D. Ekelschot, D. Moxey, S.J. Sherwin, J. Peiró, A p-adaptation method for compressible flow problems using a goal-based error estimator. Comput. Struct. 181, 55–69 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Ferrer, D. Moxey, S.J. Sherwin, R.H.J. Willden, Stability of projection methods for incompressible flows using high order pressure-velocity pairs of same degree: continuous and discontinuous Galerkin formulations. Commun. Comput. Phys. 16(3), 817–840 (2014)CrossRefGoogle Scholar
  7. 7.
    K.J. Fidkowski, D.L. Darmofal, Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Giorgiani, S. Fernández-Méndez, A. Huerta, Goal-oriented hp-adaptivity for elliptic problems. Int. J. Numer. Methods Fluids 72(1), 1244–1262 (2013)CrossRefGoogle Scholar
  9. 9.
    D. de Grazia, G. Mengaldo, D. Moxey, P. Vincent, S.J. Sherwin, Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes. Int. J. Numer. Methods Fluids 75(12), 860–877 (2014)CrossRefMathSciNetGoogle Scholar
  10. 10.
    H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, in: 18th AIAA Computational Fluid Dynamics Conference, p. 4079 (2007)Google Scholar
  11. 11.
    G. Karniadakis, S. Sherwin, Spectral∕hp Element Methods for Computational Fluid Dynamics, 2nd edn. (Oxford University Press, Oxford, 2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    G.E. Karniadakis, Spectral element-Fourier methods for incompressible turbulent flows. Comput. Methods Appl. Mech. Eng. 80(1–3), 367–380 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    G.E. Karniadakis, M. Israeli, S.A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97(2), 414–443 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    L.Y. Li, Y. Allaneau, A. Jameson, Comparison of h- and p-adaptations for spectral difference methods, in: 40th AIAA Fluid Dynamics Conference and Exhibit (2010)Google Scholar
  15. 15.
    J.E.W. Lombard, D. Moxey, S.J. Sherwin, J.F.A. Hoessler, S. Dhandapani, M.J. Taylor, Implicit large-eddy simulation of a wingtip vortex. AIAA J. 54(2), 506–518 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Markall, A. Slemmer, D. Ham, P. Kelly, C. Cantwell, S. Sherwin, Finite element assembly strategies on multi-core and many-core architectures. Int. J. Numer. Methods Fluids 71(1), 80–97 (2013)CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Mengaldo, D. de Grazia, D. Moxey, P.E. Vincent, S.J. Sherwin, Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    G. Mengaldo, D. de Grazia, P.E. Vincent, S.J. Sherwin, On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes. J. Sci. Comput. 67(3), 1272–1292 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    R.C. Moura, G. Mengaldo, J. Peiró, S.J. Sherwin, On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017)CrossRefMathSciNetGoogle Scholar
  20. 20.
    D. Moxey, M.D. Green, S.J. Sherwin, J. Peiró, An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput. Methods Appl. Mech. Eng. 283, 636–650 (2015)CrossRefMathSciNetGoogle Scholar
  21. 21.
    D. Moxey, C.D. Cantwell, R.M. Kirby, S.J. Sherwin, Optimizing the performance of the spectral/hp element method with collective linear algebra operations. Comput. Methods Appl. Mech. Eng. 310, 628–645 (2016)CrossRefGoogle Scholar
  22. 22.
    D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, J. Peiró, High-order curvilinear meshing using a thermo-elastic analogy. Comput. Aided Des. 72, 130–139 (2016)CrossRefGoogle Scholar
  23. 23.
    P.O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods. AIAA paper 112 (2006)Google Scholar
  24. 24.
    P. Solín, L. Demkowicz, Goal-oriented hp-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Eng. 193(1), 449–468 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    P.E. Vincent, P. Castonguay, A. Jameson, A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    P.E. Vos, S.J. Sherwin, R.M. Kirby, From h to p efficiently: implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229(13), 5161–5181 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    S. Yakovlev, D. Moxey, S.J. Sherwin, R.M. Kirby, To CG or to HDG: a comparative study in 3D. J. Sci. Comput. 67(1), 192–220 (2016)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • D. Moxey
    • 1
    Email author
  • C. D. Cantwell
    • 2
  • G. Mengaldo
    • 3
  • D. Serson
    • 2
  • D. Ekelschot
    • 2
  • J. Peiró
    • 2
  • S. J. Sherwin
    • 2
  • R. M. Kirby
    • 4
  1. 1.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
  2. 2.Department of AeronauticsImperial College LondonLondonUK
  3. 3.Division of Engineering and Applied SciencesCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations