Advertisement

Complications of Robotic Oncologic Renal Surgery

  • Andre Luis de Castro Abreu
  • Tania Gill
  • Giovanni Cacciamani
Chapter

Abstract

Radical (RN) or partial nephrectomy (PN) are standard treatment for renal masses, with partial nephrectomy pursued whenever feasible for small renal masses. Most recently, robotic partial nephrectomy (RPN) and robotic radical nephrectomy (RRN) have gained favor as they offer oncologic outcomes similar to their open surgical counter-part, but with benefits of less blood loss, quick recovery, less complications and similar functional outcomes (Nazemi et al., Int Braz J Urol 32:15–22, 2006; Park et al., Korean J Urol 53:519–23, 2012; Sterrett et al., World J Urol 25:193–8, 2007). In fact, RPN is the most common PN approach since 2012 and, currently, it is estimated that about 60% of PN in the USA are performed robotically. Nowadays, in centers with adequate expertise, indications for RPN are the same as for OPN; furthermore, contraindications for RPN are more surgeon- and patient-related, rather than tumor-related. As such, given adequate robotic expertise, in 2017, if a patient is deemed to be a candidate for OPN, he/she is also typically a candidate for RPN, thus delivering the considerable benefits of minimally invasive surgery. The number of RRN has also consistently increased and most recently, reports have shown safety and feasibility for RRN and robotic inferior vena cava (IVC) thrombectomy (RIVCT), as such, expanding the indications of the robotic approach (Abaza et al., Eur Urol Focus 2:601–7, 2017).

References

  1. 1.
    Nazemi T, et al. Radical nephrectomy performed by open, laparoscopy with or without hand-assistance or robotic methods by the same surgeon produces comparable perioperative results. Int Braz J Urol. 2006;32(1):15–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Park JW, et al. Cost aspects of radical nephrectomy for the treatment of renal cell carcinoma in Korea: open, laparoscopic, robot-assisted laparoscopic, and video-assisted minilaparotomy surgeries. Korean J Urol. 2012;53(8):519–23.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sterrett S, et al. Major urological oncological surgeries can be performed using minimally invasive robotic or laparoscopic methods with similar early perioperative outcomes compared to conventional open methods. World J Urol. 2007;25(2):193–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Abaza R, Eun DD, Gallucci M, Gill IS, Menon M, Mottrie A, Shabsigh A. Robotic surgery for renal cell carcinoma with vena caval tumor thrombus. Eur Urol Focus. 2017;2(6):601–7.CrossRefGoogle Scholar
  5. 5.
    Bernhard JC, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016;34(3):337–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. Eur Urol. 2012;61(1):211–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Ficarra V, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol. 2009;56(5):786–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Leslie S, et al. Renal tumor contact surface area: a novel parameter for predicting complexity and outcomes of partial nephrectomy. Eur Urol. 2014;66(5):884–93.CrossRefPubMedGoogle Scholar
  10. 10.
    Simmons MN, et al. Kidney tumor location measurement using the C index method. J Urol. 2010;183(5):1708–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Davidiuk AJ, et al. Mayo adhesive probability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy. Eur Urol. 2014;66(6):1165–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Tomaszewski JJ, et al. Internal validation of the renal pelvic score: a novel marker of renal pelvic anatomy that predicts urine leak after partial nephrectomy. Urology. 2014;84(2):351–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Abreu AL, et al. Management of large median and lateral intravesical lobes during robot-assisted radical prostatectomy. J Endourol. 2013;27(11):1389–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Hassouna HA, Manikandan R. Hemostasis in laparoscopic renal surgery. Indian J Urol. 2012;28(1):3–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Desai MM, et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol. 2014;66(4):713–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Gill IS, et al. Improved hemostasis during laparoscopic partial nephrectomy using gelatin matrix thrombin sealant. Urology. 2005;65(3):463–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Blunt LW Jr, et al. Repair of superior mesenteric artery ligation during left nephrectomy with a native renal vein patch. Urology. 2004;64(2):377–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Albani JM, Novick AC. Renal artery pseudoaneurysm after partial nephrectomy: three case reports and a literature review. Urology. 2003;62(2):227–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Jung S, et al. Risk factors for postoperative hemorrhage after partial nephrectomy. Korean J Urol. 2014;55(1):17–22.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tobis S, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186(1):47–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Hung AJ, et al. “Trifecta” in partial nephrectomy. J Urol. 2013;189(1):36–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Bruner B, et al. Renal nephrometry score is associated with urine leak after partial nephrectomy. BJU Int. 2011;108(1):67–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Zargar H, et al. Urine leak in minimally invasive partial nephrectomy: analysis of risk factors and role of intraoperative ureteral catheterization. Int Braz J Urol. 2014;40(6):763–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Abbasi A, et al. Posterior lumbar vein off the retrohepatic inferior vena cava: a novel anatomical variant with surgical implications. J Urol. 2012;187(1):296–301.CrossRefPubMedGoogle Scholar
  25. 25.
    Psutka SP, Leibovich BC. Management of inferior vena cava tumor thrombus in locally advanced renal cell carcinoma. Ther Adv Urol. 2015;7(4):216–29.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kundavaram C, et al. Advances in robotic vena cava tumor thrombectomy: intracaval balloon occlusion, patch grafting, and vena cavoscopy. Eur Urol. 2016;70(5):884–90.CrossRefPubMedGoogle Scholar
  27. 27.
    Das S. Laparoscopic staging pelvic lymphadenectomy: extraperitoneal approach. Semin Surg Oncol. 1996;12(2):134–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Collard JM, et al. Conservative treatment of postsurgical lymphatic leaks with somatostatin-14. Chest. 2000;117(3):902–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Ng CS, et al. Retroperitoneoscopic surgery is not associated with increased carbon dioxide absorption. J Urol. 1999;162(4):1268–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Wolf JS Jr, Stoller ML. The physiology of laparoscopy: basic principles, complications and other considerations. J Urol. 1994;152(2 Pt 1):294–302.CrossRefPubMedGoogle Scholar
  31. 31.
    Abreu SC, et al. Thoracic complications during urological laparoscopy. J Urol. 2004;171(4):1451–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu W, et al. Off-clamp versus complete hilar control partial nephrectomy for renal cell carcinoma: a systematic review and meta-analysis. J Endourol. 2014;28(5):567–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Gettman MT, et al. Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with DaVinci robotic system. Urology. 2004;64(5):914–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Caruso RP, et al. Robot assisted laparoscopic partial nephrectomy: initial experience. J Urol. 2006;176(1):36–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Kaul S, et al. Da Vinci-assisted robotic partial nephrectomy: technique and results at a mean of 15 months of follow-up. Eur Urol. 2007;51(1): 186–91; discussion 191–2.Google Scholar
  36. 36.
    Aron M, et al. Robotic and laparoscopic partial nephrectomy: a matched-pair comparison from a high-volume centre. BJU Int. 2008;102(1):86–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Deane LA, et al. Robotic versus standard laparoscopic partial/wedge nephrectomy: a comparison of intraoperative and perioperative results from a single institution. J Endourol. 2008;22(5):947–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Rogers CG, et al. Robotic partial nephrectomy: A multi-institutional analysis. J Robot Surg. 2008;2(3):141–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Rogers CG, et al. Robotic partial nephrectomy for renal hilar tumors: a multi-institutional analysis. J Urol. 2008;180(6):2353–6; discussion 2356.Google Scholar
  40. 40.
    Wang AJ, Bhayani SB. Robotic partial nephrectomy versus laparoscopic partial nephrectomy for renal cell carcinoma: single-surgeon analysis of >100 consecutive procedures. Urology. 2009;73(2):306–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Michli EE, Parra RO. Robotic-assisted laparoscopic partial nephrectomy: initial clinical experience. Urology. 2009;73(2):302–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Ho H, et al. Robotic-assisted laparoscopic partial nephrectomy: surgical technique and clinical outcomes at 1 year. BJU Int. 2009;103(5):663–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Benway BM, Bhayani SB. Robot-assisted partial nephrectomy: evolution and recent advances. Curr Opin Urol. 2010;20(2):119–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Patel MN, et al. Robotic partial nephrectomy for renal tumors larger than 4 cm. Eur Urol. 2010;57(2):310–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Scoll BJ, et al. Robot-assisted partial nephrectomy: a large single-institutional experience. Urology. 2010;75(6):1328–34.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Petros F, et al. Multi-institutional analysis of robot-assisted partial nephrectomy for renal tumors >4 cm versus ≤4 cm in 445 consecutive patients. J Endourol. 2012;26(6):642–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Ficarra V, et al. Robot-assisted partial nephrectomy for renal tumors larger than 4 cm: results of a multicenter, international series. World J Urol. 2012;30(5):665–70.CrossRefPubMedGoogle Scholar
  48. 48.
    Gupta GN, et al. Robot-assisted laparoscopic partial nephrectomy for tumors greater than 4 cm and high nephrometry score: feasibility, renal functional, and oncological outcomes with minimum 1 year follow-up. Urol Oncol. 2013;31(1):51–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Rogers C, et al. Robotic nephrectomy for the treatment of benign and malignant disease. BJU Int. 2008;102(11):1660–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Hemal AK, Kumar A. A prospective comparison of laparoscopic and robotic radical nephrectomy for T1-2N0M0 renal cell carcinoma. World J Urol. 2009;27(1):89–94.CrossRefPubMedGoogle Scholar
  51. 51.
    Boger M, et al. Comparison of robot-assisted nephrectomy with laparoscopic and hand-assisted laparoscopic nephrectomy. JSLS. 2010;14(3):374–80.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lorenzo EIS, et al. Robotics applied in laparoscopic kidney surgery: the Yonsei University experience of 127 cases. Urology. 2011;77(1):114–8.CrossRefPubMedGoogle Scholar
  53. 53.
    White MA, et al. Robotic laparoendoscopic single-site radical nephrectomy: surgical technique and comparative outcomes. Eur Urol. 2011;59(5):815–22.CrossRefPubMedGoogle Scholar
  54. 54.
    Dogra PN, et al. Outcomes following robotic radical nephrectomy: a single-center experience. Urol Int. 2012;89(1):78–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Khanna R, et al. Single institution experience with robot-assisted laparoendoscopic single-site renal procedures. J Endourol. 2012;26(3):230–4.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang LH, et al. Robotic-assisted laparoscopic nephrectomy (right) combined with inferior vena caval thrombectomy for level II tumor thrombus: The first clinical case in China. Acad J Second Mil Univ. 2014;35(7):763–8.CrossRefGoogle Scholar
  57. 57.
    Gill IS, et al. Robotic Level III inferior vena cava tumor thrombectomy: initial series. J Urol. 2015;194(4):929–38.CrossRefPubMedGoogle Scholar
  58. 58.
    Petros FG, Angell JE, Abaza R. Outcomes of robotic nephrectomy including highest-complexity cases: largest series to date and literature review. Urology. 2015;85(6):1352–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Abaza R, et al. Multi-institutional experience with robotic nephrectomy with inferior vena cava tumor thrombectomy. J Urol. 2016;195(4):865–71.CrossRefPubMedGoogle Scholar
  60. 60.
    Davila HH, Storey RE, Rose MC. Robotic-assisted laparoscopic radical nephrectomy using the Da Vinci Si system: how to improve surgeon autonomy. Our step-by-step technique. J Robot Surg. 2016;10(3):285–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Helmers MR, et al. Robotic versus laparoscopic radical nephrectomy: comparative analysis and cost considerations. Can J Urol. 2016;23(5):8435–40.PubMedGoogle Scholar
  62. 62.
    Abaza R. Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol. 2011;59(4):652–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Ball MW, et al. Robot-assisted radical nephrectomy with inferior vena cava tumor thrombectomy: technique and initial outcomes. Can J Urol. 2015;22(1):7666–70.PubMedGoogle Scholar
  64. 64.
    Schmit GD, et al. Usefulness of R.E.N.A.L. nephrometry scoring system for predicting outcomes and complications of percutaneous ablation of 751 renal tumors. J Urol. 2013;189(1):30–5.CrossRefPubMedGoogle Scholar
  65. 65.
    Chang X, et al. The comparison of R.E.N.A.L., PADUA and centrality index score in predicting perioperative outcomes and complications after laparoscopic radio frequency ablation of renal tumors. J Urol. 2015;194(4):897–902.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andre Luis de Castro Abreu
    • 1
  • Tania Gill
    • 1
  • Giovanni Cacciamani
    • 1
    • 2
  1. 1.Section of Robotic and Laparoscopic Surgery, Catherine and Jospeh Aresty Department of UrologyUSC Institute of Urology, Keck School of Medicine of University of Southern CaliforniaLos AngelesUSA
  2. 2.Department of UrologyUniversity of Verona, Azienda Universitaria IntegrataVeronaItaly

Personalised recommendations