Advertisement

Complications of Robotic Instrument Malfunctions

  • Ziho Lee
  • Daniel D. Eun
Chapter

Abstract

A robotic instrument malfunction refers to a defect in a robotic instrument that limits its normal function. Fortunately, robotic instrument malfunctions are rare, and occur in 0.25–1.1% of urologic robotic surgeries (Friedman et al., Surg Endosc 27:1503–1508, 2013; Park et al., Yonsei Med J 51:148–150, 2010). However, it is critical for the surgeon to be knowledgeable about robotic instrument malfunctions as they may compromise the surgeon’s ability to safely complete an operation and adversely affect clinical outcomes. For example, robotic instrument malfunctions may increase operating room times, cause operating room delays, and lead to iatrogenic injuries. Despite this, the literature regarding robotic instrument malfunctions is unfortunately limited.

References

  1. 1.
    Friedman DC, Lendvay TS, Hannaford B. Instrument Failures for the da Vinci surgical system: a food and drug administration MAUDE database study. Surg Endosc. 2013;27(5):1503–8. Epub 2012/12/18.CrossRefPubMedGoogle Scholar
  2. 2.
    Park SY, Ahn JJ, Jeong W, Ham WS, Rha KH. A unique instrumental malfunction during robotic prostatectomy. Yonsei Med J. 2010;51(1):148–50. Epub 2010/01/05.CrossRefPubMedGoogle Scholar
  3. 3.
    Park SY, Cho KS, Lee SW, Soh BH, Rha KH. Intraoperative breakage of needle driver jaw during robotic-assisted laparoscopic radical prostatectomy. Urology. 2008;71(1):168 e5–6. Epub 2008/02/05.Google Scholar
  4. 4.
    Kim WT, Ham WS, Jeong W, Song HJ, Rha KH, Choi YD. Failure and malfunction of da Vinci Surgical systems during various robotic surgeries: experience from six departments at a single institute. Urology. 2009;74(6):1234–7. Epub 2009/09/01.CrossRefPubMedGoogle Scholar
  5. 5.
    Lucas SM, Pattison EA, Sundaram CP. Global robotic experience and the type of surgical system impact the types of robotic malfunctions and their clinical consequences: an FDA MAUDE review. BJU Int. 2012;109(8):1222–7. discussion 7. Epub 2011/11/03.CrossRefPubMedGoogle Scholar
  6. 6.
    Zorn KC, Gofrit ON, Orvieto MA, Mikhail AA, Galocy RM, Shalhav AL, et al. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies. J Endourol. 2007;21(11):1341–4. Epub 2007/11/29.CrossRefPubMedGoogle Scholar
  7. 7.
    Ostrzenski A. An intraoperative method of localizing a missing piece of a broken laparoscopic instrument. Am J Obstet Gynecol. 1997;176(3):726–7. Epub 1997/03/01.CrossRefPubMedGoogle Scholar
  8. 8.
    Mendez-Probst CE, Vilos G, Fuller A, Fernandez A, Borg P, Galloway D, et al. Stray electrical currents in laparoscopic instruments used in da Vinci(R) robot-assisted surgery: an in vitro study. J Endourol. 2011;25(9):1513–7. Epub 2011/08/06.CrossRefPubMedGoogle Scholar
  9. 9.
    Lorenzo EI, Jeong W, Park S, Kim WT, Hong SJ, Rha KH. Iliac vein injury due to a damaged Hot Shears tip cover during robot assisted radical prostatectomy. Yonsei Med J. 2011;52(2):365–8. Epub 2011/02/15.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mues AC, Box GN, Abaza R. Robotic instrument insulation failure: initial report of a potential source of patient injury. Urology. 2011;77(1):104–7. Epub 2010/09/18.CrossRefPubMedGoogle Scholar
  11. 11.
    Vilos G, Latendresse K, Gan BS. Electrophysical properties of electrosurgery and capacitive induced current. Am J Surg. 2001;182(3):222–5. Epub 2001/10/06.CrossRefPubMedGoogle Scholar
  12. 12.
    Yazdani A, Krause H. Laparoscopic instrument insulation failure: the hidden hazard. J Minim Invasive Gynecol. 2007;14(2):228–32. Epub 2007/03/21.CrossRefPubMedGoogle Scholar
  13. 13.
    Engebretsen SR, Huang GO, Wallner CL, Anderson KM, Schlaifer AE, Arnold Ii DC, et al. A prospective analysis of robotic tip cover accessory failure. J Endourol. 2013;27(7):914–7. Epub 2013/03/07.CrossRefPubMedGoogle Scholar
  14. 14.
    Selli C, Turri FM, Gabellieri C, Manassero F, De Maria M, Mogorovich A. Delayed-onset ureteral lesions due to thermal energy: an emerging condition. Arch Ital Urol Androl. 2014;86(2):152–3. Epub 2014/07/16.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of UrologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations