Advertisement

Experimental Techniques of Nerve Regeneration in the Neurovascular Bundle

  • Francesco Porpiglia
  • Riccardo Bertolo
  • Beat Förster
  • Hubert John
Chapter

Abstract

Over the last two decades the knowledge of the anatomical structures surrounding the prostate has increased, together with the development of surgical technique of radical prostatectomy.

In this field the robotic system has certainly played a crucial role, thanks to the undoubted advantages such as the image magnification, the three-dimensional view and the improved surgeon’s dexterity thanks to the miniaturized instruments.

References

  1. 1.
    Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9:202–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Gravvanis AI, Lavdas A, Papalois AE, et al. Effect of genetically modified Schwann cells with increased motility in end-to-side nerve grafting. Microsurgery. 2005;25:423–32.CrossRefPubMedGoogle Scholar
  3. 3.
    IJkema-Paassen J, Jansen K, Gramsbergen A, Meek MF. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials. 2004;25:1583–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Quinlan DM, Epstein JI, Carter BS, et al. Sexual function following radical prostatectomy: influence of preservation of neurovascular bundles. J Urol. 1991;145:998–1002.CrossRefPubMedGoogle Scholar
  5. 5.
    Catalona WJ, Carvalhal GF, Mager DE, et al. Potency, continence and complication rates in 1,870 consecutive radical retropubic prostatectomies. J Urol. 1999;162:433–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Rabbani F, Stapleton AM, Kattan MW, et al. Factors predicting recovery of erections after radical prostatectomy. J Urol. 2000;164:1929–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Hyochi N, Kihara K, Arai G, et al. Reconstruction of the sympathetic pathway projecting to the prostate, by nerve grafting in the dog. BJU Int. 2004;94:147–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Walsh PC. Nerve grafts are rarely necessary and are unlikely to improve sexual function in men undergoing anatomic radical prostatectomy. Urology. 2001;57:1020–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Kilgo MS, Howard MA, Kaplan G, et al. Evaluation of genitofemoral nerve donor site morbidity after radical prostatectomy. Ann Plast Surg. 2005;55:57–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Srougi M, Pereira D, Dall’Oglio M. Sexual rehabilitation after radical retropubic prostatectomy: new technique using ilio-inguinal nerve graft. Int Braz J Urol. 2002;28:446–50.PubMedGoogle Scholar
  11. 11.
    Kim ED, Nath R, Kadmon D, et al. Bilateral nerve grafts during radical retropubic prostatectomy: a one year follow-up. J Urol. 2001;165(6 Pt 1):1950–6.PubMedGoogle Scholar
  12. 12.
    Mackinnon SE, Dellon AL. Nerve injury and regeneration. In: Mackinnon SE, Dellon AL, editors. Surgery of the peripheral nerve. New York: Thieme Medical Publishers; 1988. p. 17–31.Google Scholar
  13. 13.
    Davis JW, Chang DW, Chevray P, et al. Randomized phase II trial evaluation of erectile function after attempted unilateral cavernous nerve-sparing retropubic radical prostatectomy with versus without unilateral sural nerve grafting for clinically localized prostate cancer. Eur Urol. 2009;55:1135.CrossRefPubMedGoogle Scholar
  14. 14.
    Siddiqui KM, Billia M, Mazzola CR, et al. Three-year outcomes of recovery of erectile function after open radical prostatectomy with sural nerve grafting. J Sex Med. 2014;11:2119–24.CrossRefPubMedGoogle Scholar
  15. 15.
    White WM, Kim ED. Interposition nerve grafting during radical prostatectomy: cumulative review and critical appraisal of literature. Urology. 2009;74:245–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Slawin KM, Canto EI, Shariat SF. Sural nerve interposition grafting during radical prostatectomy. Rev Urol. 2002;4:17–23.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Turk IA, Deger S, Morgan WR, Davis JW, Schellhammer PF, Loening SA. Sural nerve graft during laparoscopic radical prostatectomy: initial experience. Urol Oncol. 2002;7:191–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Kaouk JH, Desai MM, Abreu SC, Papay F, Gill IS. Robotic assisted laparoscopic sural nerve grafting during radical prostatectomy: initial experience. J Urol. 2003;170:909–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Porpiglia F, Ragni F, Terrone C, et al. Is laparoscopic unilateral sural nerve grafting during radical prostatectomy effective in retaining sexual potency? BJU Int. 2005;95:1267–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Zorn KC, Bernstein AJ, Gofrit ON, et al. Long-term functional and oncological outcomes of patients undergoing sural nerve interposition grafting during robot-assisted laparoscopic radical prostatectomy. J Endourol. 2008;22(5):1005–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Danielsen N, Kerns JM, Holmquist B, et al. Predegeneration enhances regeneration into acellular nerve grafts. Brain Res. 1995;681:105.CrossRefPubMedGoogle Scholar
  22. 22.
    Dahlin LB, Lundborg G. Use of tubes in peripheral nerve repair. Neurosurg Clin N Am. 2001;12:341.CrossRefPubMedGoogle Scholar
  23. 23.
    Zuo J, Hernandez YJ, Muir D. Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. J Neurobiol. 1998;34:41.CrossRefPubMedGoogle Scholar
  24. 24.
    Krekoski CA, Neubauer D, Zuo J, et al. Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci. 2001;21:6206.CrossRefPubMedGoogle Scholar
  25. 25.
    Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207:163.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chang DW, Wood CG, Kroll SS, et al. Cavernous nerve reconstruction to preserve erectile function following non-nerve-sparing radical retropubic prostatectomy: a prospective study. Plast Reconstr Surg. 2003;111:1174.CrossRefPubMedGoogle Scholar
  27. 27.
    Kim ED, Scardino PT, Hampel O, et al. Interposition of sural nerve restores function of cavernous nerves resected during radical prostatectomy. J Urol. 1999;161:188.CrossRefPubMedGoogle Scholar
  28. 28.
    Vollmer C, Foerster B, Horstmann M, et al. Nerve grafting with an allograft during radical prostatectomy: a randomized controlled trial. Submitted.Google Scholar
  29. 29.
    Tewari A, Srivastava A, Sooriakumaran P, et al. Technique of traction-free nerve-sparing robotic prostatectomy: delicate tissue handling by real-time penile oxygen monitoring. Int J Impot Res. 2012;24:11–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Finley DS, Chang A, Morales B, et al. Impact of regional hypothermia on urinary continence and potency after robot-assisted radical prostatectomy. J Endourol. 2010;24:1111–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Raimondo S, Fornaro M, Tos P, Battiston B, Giacobini-Robecchi MG, Geuna S. Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat. 2011;193:334–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Patel VR, Samavedi S, Bates AS, et al. Dehydrated human amnion/chorion membrane allograft nerve wrap around the prostatic neurovascular bundle accelerates early return to continence and potency following robot-assisted radical prostatectomy: propensity score–matched analysis. Eur Urol. 2015;67(6):977–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Liang H, Liang P, Xu Y, Wu J, Liang T, Xu X. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats. J Neurotrauma. 2009;26:1745–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Raina R, Pahlajani G, Agarwal A, Zippe CD. Early penile rehabilitation following radical prostatectomy: Cleveland Clinic experience. Int J Impot Res. 2008;20:121–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Hsu SH, Ho TT, Tseng TC. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosanhyaluronan substrates. Biomaterials. 2012;33:3639–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S, Muzzarelli RA. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym. 2013;98:665–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004;25:4273–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Simoes MJ, et al. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Acta Medica Port. 2011;24:43–52.Google Scholar
  40. 40.
    Gnavi S, et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. Int Rev Neurobiol. 2013;109:1–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Xu H, Yan Y, Li S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials. 2011;32:4506–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Haastert-Talini K, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials. 2013;34:9886–904.CrossRefPubMedGoogle Scholar
  43. 43.
    Meyer C, et al. Peripheral nerve regeneration through hydrogel-enriched chitosan conduits containing engineered Schwann cells for drug delivery. Cell Transplant. 2016;25:159–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Porpiglia F, Morra I, Lucci Chiarissi M, et al. Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy. Eur Urol. 2013;63(4):606–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Waibel KH, Haney B, Moore M, Whisman B, Gomez R. Safety of chitosan bandages in shellfish allergic patients. Mil Med. 2011;176:1153.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Urology, Department of Oncology“San Luigi Gonzaga” Hospital, University of TurinOrbassano (Turin)Italy
  2. 2.Department of UrologyKantonsspital Winterthur, EBU Certified Training CenterWinterthurSwitzerland

Personalised recommendations