Advertisement

New Robotic Platforms

  • Jens J. Rassweiler
  • Ali Serdar Goezen
  • Jan Klein
  • Evangelos Liatsikos
Chapter

Abstract

Robotic surgery has been introduced successfully to facilitate laparoscopic surgery including even radical cystectomy and urinary diversion (Rassweiler et al., Curr Opin Urol 11:309–20, 2001; Wilson et al., Eur Urol 67:363–75, 2015). However, this was accompanied by monopoly of Intuitive Surgical (Teber et al., Curr Opin Urol 19:108–13, 2009; Ghezzi and Corleta, World J Surg 40:2550–7, 2016). The company owns more than 1500 patents regarding robotic surgery of which some of earlier patents will expire in following years (Table 1.1). This promotes new manufacturers to introduce alternate devices (Table 1.2). Recently, we updated significant developments of robotic devices used for urologic surgery and endourology (Minimally invasive surgery in urology, 353–410; Rassweiler et al., BJU Int, 2017). Based on this, we want to focus on technical modifications of upcoming devices with special emphasis on future clinical applicability.

References

  1. 1.
    Rassweiler J, Binder J, Frede T. Robotic and telesurgery: will they change our future. Curr Opin Urol. 2001;11:309–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Wilson TG, Guru K, Rosen RC, et al. Consensus Panel. Best practices in robot-assisted radical cystectomy and urinary reconstruction: recommendations of the Pasadena Consensus Panel. Eur Urol. 2015;67:363–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Teber D, Baumhauer M, Guven EO, Rassweiler J. Robotics and imaging in urological surgery. Curr Opin Urol. 2009;19:108–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Ghezzi L, Corleta C. 30 years of robotic surgery. World J Surg. 2016;40(10):2550–7.CrossRefGoogle Scholar
  5. 5.
    Rassweiler J, Bach T, Liatsikos E, Rane A, Richstone L, Teber D, Tewari A. Future of minimally invasive surgery. In: Artibani W, Rassweiler J, Kaouk J, Menon M, editors. Minimally invasive surgery in urology, International consultation on minimally invasive surgery in urology (ICUD-EAU 2015). p. 353–410. isbn:978-9953-493-22-0.Google Scholar
  6. 6.
    Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, Rha KH, Schurr M, Kaouk J, Patel V, Dasgupta P, Liatsikos E. Future of robotic surgery in urology. BJU Int. 2017.Google Scholar
  7. 7.
    Schurr MO, Arezzo A, Buess GF. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery. Eur J Cardiothorac Surg. 1999;16(Suppl 2):S97–105.PubMedGoogle Scholar
  8. 8.
    Schurr MO, Buess G, Neisius B, Voges U. Robotics and telemanipulation technologies for endoscopic surgery. A review of the ARTEMIS project. Surg Endosc. 2000;14:375–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Rininsland H. ARTEMIS. A telemanipulator for cardiac surgery. Eur J Cardiothorac Surg. 1999;16(Suppl 2):S106–11.PubMedGoogle Scholar
  10. 10.
    Reichenspurner H, Damiano R, Mack M, et al. Use of the voice-controlled surgical system ZEUS for endoscopic coronary bypass grafting. J Thorac Cardiovasc Surg. 1999;118:11–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Kavoussi LR, Moore RG, Adams JB, Partin AW. Comparison of robotic versus human laparoscopic camera control. J Urol. 1995;154:2134–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413:379–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Wagner AA, Varkarakis M, Link RE, Sullivan W, Su L-M. Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders; EndoAssist and AESOP: a pilot study. Urology. 2006;68:70–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Janetschek G, Bartsch G, Kavoussi LR. Transcontinental interactive laparoscopic telesurgery between the United States and Europe. J Urol. 1998;160:1413–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Rassweiler J, Gözen AS, Scheitlin W, Teber D, Frede T. Robotic-assisted surgery: low-cost-options. In: Kumar S, Marescaux J, editors. Telesurgery. Heidelberg: Springer; 2008. p. 67–89.CrossRefGoogle Scholar
  16. 16.
    Luke PP, Girvan AR, Al Omar M, et al. Laparoscopic robotic pyeloplasty using Zeus telesurgical system. Can J Urol. 2004;11:2396–400.PubMedGoogle Scholar
  17. 17.
    Guillonneau B, Cappèle O, Bosco J, Vallancien G. Robotic assisted laparoscopic pelvic lymph node dissection in humans. J Urol. 2001;165:1078–81.CrossRefPubMedGoogle Scholar
  18. 18.
  19. 19.
    Green PE, Piantanida TA, Hill JW, et al. Telepresence: dexterious procedures in a virtual operating field. Am Surg. 1991;57:192.Google Scholar
  20. 20.
    Satava RM. Robotics, telepresence and virtual reality: a critical analysis of the future of surgery. Minim Invasive Ther. 1992;1:357–63.Google Scholar
  21. 21.
    Feder BJ. Prepping robots to perform surgery, Business Day, 2008. http://www.nytimes.com/2008/05/04/business/04moll.html?pagewanted=all
  22. 22.
    Mohr FW, Falk V, Diegeler A, Autschbach R. Computer-enhanced coronary artery surgery. J Thorac Cardiovasc Surg. 1999;117:1212–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Binder J, Kramer W. Robotically assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Abbou CC, Hoznek A, Salomon L, et al. Laparoscopic radical prostatectomy with a remote controlled robot. J Urol. 2001;165:1964–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Pasticier G, Rietbergen JBW, Guillonneau B, et al. Robotically assisted laparoscopic radical prostatectomy. Feasibility study in men. Eur Urol. 2001;40:70–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Rassweiler J, Frede T, Seemann O, et al. Telesurgical laparoscopic radical prostatectomy—intial experience. Eur Urol. 2001;40:75–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Menon M, Shrivastava A, Tewari A, et al. Laparoscopic and robot assisted radical prostatectomy: establishment of a structured program and preliminary analysis of outcomes. J Urol. 2002;168:945–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Rassweiler J, Frede T, Seemann O, Stock C, Sentker L. Telepresence surgery: first experiences with laparoscopic radical prostatectomy. Minim Invasive Ther Allied Technol. 2001;10:261–70.CrossRefGoogle Scholar
  29. 29.
    Rao R, Nayyar R, Panda S, Hemal AK. Surgical techniques: robotic bladder diverticulectomy with the da Vinci-S system. J Robot Surg. 2007;1:217–20.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kang SW, Lee SC, Lee SH, et al. Robotic thyroid surgery using gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients. Surgery. 2009;146:1048–55.CrossRefPubMedGoogle Scholar
  31. 31.
    Tobis S, Knopf J, Silvers C, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186:47–52.CrossRefPubMedGoogle Scholar
  32. 32.
    Autorino R, Zargar H, White WM, et al. Current applications of near-infrared fluorescence imaging in robotic urologic surgery: a systematic review and critical analysis of the literature. Urology. 2014;84:751–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Autschbach R, Falk V, Stein H, Mohr FW. Experience with a new OR dedicated to robotic surgery. Minim Invasive Ther Allied Technol. 2000;9:213–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Cestari A, Buffi NM, List G, et al. Feasibility and preliminary clinical outcomes of robotic laparoendoscopic single-site (R-LESS) pyeloplasty using a new single-port platform. Eur Urol. 2012;62:175–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Kaouk JH, Haber GP, Autorino R, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66:1033–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Irving M. Da Vinci X is designed to get robotic surgery systems into more hospitals. http://newatlas.com/da-vinci-x-surgical-robot/49289/#gallery. Accessed 1 May 2017.
  37. 37.
    Gidaro S, Buscarini M, Ruzi E, et al. Telelap Alf-X: a novel telesurgical system for the 21st century. Surg Technol Int. 2012;22:20–5.PubMedGoogle Scholar
  38. 38.
    Frede T, Hammady A, Klein J, et al. The radius surgical system—a new device for complex minimally invasive procedures in urology? Eur Urol. 2007;51:1015–22.CrossRefPubMedGoogle Scholar
  39. 39.
    Gidaro S, Altobelli E, Falavolti C, et al. Vesicourethral anastomosis using a novel telesurgical system with haptic sensation, the Telelap Alf-X: a pilot study. Surg Technol Int. 2014;24:35–40.PubMedGoogle Scholar
  40. 40.
    Falavolti C, Gidaro S, Ruiz E, et al. Experimental nephrectomies using a novel Telesurgical System: (The Telelap ALF-X)—a pilot study. Surg Technol Int. 2014;25:37.PubMedGoogle Scholar
  41. 41.
  42. 42.
    Rossito C, Gueli Alletti S, et al. Use of robot-specific resources and operating room times: the case of Telelap Alf-X robotic hysterectomy. Int J Med Robot. 2016;12:614–9.Google Scholar
  43. 43.
    Fanfani F, Restaino S, Rossitto C, et al. Total laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: a case control study. J Minim Invasive Gynecol. 2016;23:933–8.CrossRefPubMedGoogle Scholar
  44. 44.
  45. 45.
    Hagn U, Konietschke R, Tobergte A, et al. DLR Miro surge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg. 2010;5:183–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Thielmann S, Seibold U, Haslinger R, et al. MICA—a new generation of versatile instruments in robotic surgery. Proc Int Conference Intelligent Robots and Systems. Taipeh; 2010.Google Scholar
  47. 47.
  48. 48.
  49. 49.
  50. 50.
  51. 51.
    Tuliao PH, Kim SW, Rha KH. New technologies in robotic surgery: the Korean experience. Curr Opin Urol. 2014;24:111–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee W-J. Ten-year experience of the da Vinci robotic surgery at Severance Yonsei University Hospital in Korea. Hanyang Med Rev. 2016;36(4):215–24.CrossRefGoogle Scholar
  53. 53.
    Kim DD, Park DW, Rha KH. Robot-assisted partial nephrectomy with the REVO I-robot platform in porcine models. Eur Urol. 2016;69:541–2.CrossRefPubMedGoogle Scholar
  54. 54.
    Abdel Rahem A, Troya IS, Kim DK, et al. Robot-assisted Fallopian tube transection-anastomosis using the new REVO 1 robotical surgical system: feasibility in a chronic porcine study. BJU Int. 2016;118:604–9.CrossRefGoogle Scholar
  55. 55.
  56. 56.
  57. 57.
  58. 58.
  59. 59.
  60. 60.
  61. 61.
  62. 62.
  63. 63.
  64. 64.
    Albala D. Titan Robot (Canada), presented at 31st World Congress of Endourology. 2013.Google Scholar
  65. 65.
  66. 66.
  67. 67.
    Hannaford B, Rosen J, Friedman DW, et al. Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng. 2013;60:954–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Van den Bedem LJM. Realization of a demonstrator slave for robotic minimally invasive surgery. Eindhoven: Technische Universiteit Eindhoven; 2010; isbn:978-90-386-2300-9.Google Scholar
  69. 69.
  70. 70.
  71. 71.
    Rassweiler JJ, Teber D. Advances in laparoscopic surgery in urology. Nat Rev Urol. 2016;13:387–99.CrossRefPubMedGoogle Scholar
  72. 72.
    Ramirez D, Maurice MJ, Kaouk JH. Robotic perineal radical prostatectomy and pelvic lymph node dissection using a purpose-built single-port robotic platform. BJU Int. 2016;118(5):829–33.  https://doi.org/10.1111/bju.13581.CrossRefPubMedGoogle Scholar
  73. 73.
    Maurice MJ, Ramirez D, Kaouk JH. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur Urol. 2016;71(4):643–7.  https://doi.org/10.1016/j.eururo.2016.06.005.CrossRefPubMedGoogle Scholar
  74. 74.
  75. 75.
  76. 76.
    Petroni G, Niccolini M, Caccavaro S, et al. A novel robotic system for single-port laparoscopic surgery: preliminary experience. Surg Endosc. 2013;27:1032–937.Google Scholar
  77. 77.
    Herrell SD, Webster R, Simaan N. Future robotic platforms in urologic surgery: recent developments. Curr Opin Urol. 2014;24:118–26.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wortman TD, Mondry JM, Farritor SM, Oleynikov D. Single-site colectomy with miniature in vivo robotic platform. IEEE Trans Biomed Eng. 2013;60(4):926–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Lehman AC, Wood NA, Farritor S, Goede MR, Oleynikov D. Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc. 2011;25:119–23.CrossRefPubMedGoogle Scholar
  80. 80.
    Kobayashi Y, Sekiguchi Y, Noguchi T, Takahashi Y, et al. Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery. Int J Med Robot. 2015;11:235–46.CrossRefPubMedGoogle Scholar
  81. 81.
    Haber GP, Autorino R, Laydner Y, et al. Spider surgical system for urologic procedures with laparoendoscopic single-site surgery from initial laboratory experience to first clinical application. Eur Urol. 2012;61:415–22.CrossRefPubMedGoogle Scholar
  82. 82.
  83. 83.
    Kawai T, Shin M, Nishizawa Y, et al. Mobile locally operated detachable end-effector manipulator for endoscopic surgery. Int J Comput Assist Radiol Surg. 2015;10:161–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Jaspers JEN, Bentala M, Herder JL, et al. Mechanical manipulator for intuitive control of endoscopic instruments with seven degrees of freedom. Minim Invasive Ther Allied Technol. 2004;13:191–8.CrossRefPubMedGoogle Scholar
  85. 85.
  86. 86.
    Rassweiler JJ, Goezen AS, Jalal AA, et al. A new platform improving the ergonomics of laparoscopic surgery: initial clinical evaluation of the prototype. Eur Urol. 2012;61:226–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Rassweiler JJ, Klein J, Tschada A, Gözen AS. Laparoscopic retroperitoneal partial nephrectomy using an ergonomic chair: demonstration of technique and matched-pair analysis. BJU Int. 2017;119(2):349–57.  https://doi.org/10.1111/bju.13627.CrossRefPubMedGoogle Scholar
  88. 88.
  89. 89.
    Desai MM, Grover R, Aron M, et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol. 2011;186:563–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Saglam R, Muslumanoglu AY, Tokatlı Z, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b). Eur Urol. 2014;66:1092–100.CrossRefPubMedGoogle Scholar
  91. 91.
    Williams S, Swanson C. Bull vs. bear: Intuitive Surgical, Inc. Stock. http://www.fool.com/investing/general/2014/10/06/bull-vs-bear-intuitive-surgical-inc-stock.aspx
  92. 92.
    Alpha deal group LCC: could Titan Medical storm the robotic market?. http://alphanow.thomsonreuters.com/2014/03/titan-storm-robotic-surgery-market/
  93. 93.
    Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8:337–42.CrossRefGoogle Scholar
  94. 94.
    Cha J, Shademan A, Le HN, Decker R, et al. Multispectral tissue characterization for intestinal anastomosis optimization. J Biomed Opt. 2015;20(10):106001.  https://doi.org/10.1117/1.JBO.20.10.106001.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Gilling P, Reuther R, Kahokehr A, Fraundorfer M. Aquablation—image-guided robot-assisted waterjet ablation. BJU Int. 2016;117:923–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jens J. Rassweiler
    • 1
  • Ali Serdar Goezen
    • 1
  • Jan Klein
    • 2
  • Evangelos Liatsikos
    • 3
  1. 1.Department of Urology, SLK-Kliniken HeilbronnUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of UrologyMedical School, University of UlmUlmGermany
  3. 3.Department of UrologyUniversity of PatrasPatrasGreece

Personalised recommendations