A Symbolic Operational Semantics for TESL

With an Application to Heterogeneous System Testing
  • Hai Nguyen VanEmail author
  • Thibaut Balabonski
  • Frédéric Boulanger
  • Chantal Keller
  • Benoît Valiron
  • Burkhart Wolff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10419)


TESL addresses the specification of the temporal aspects of an architectural composition language that allows the composition of timed subsystems. TESL specifies the synchronization points between events and time scales. Methodologically, subsystems having potentially different models of execution are abstracted to their interfaces expressed in terms of timed events.

In this paper, we present an operational semantics of TESL for constructing symbolic traces that can be used in an online-test scenario: the symbolic trace containing a set of constraints over time-stamps and occurrences of events is matched against concrete runs of the system.

We present the operational rules for building symbolic traces and illustrate them with examples. Finally, we show a prototype implementation that generates symbolic traces, and its use for testing.


Heterogeneity Synchronicity Timed behaviors 


  1. 1.
    UML profile for MARTE\({^{\mathtt{TM}}}\): Modeling and analysis of real-time embedded systems\({^{\mathtt{TM}}}\).
  2. 2.
    International online testing symposium (1995–2017).
  3. 3.
    IEEE standard verilog hardware description language. IEEE Std 1364–2001 (2001).
  4. 4.
    Specification: Business process execution language for web services version 1.1 (2003).
  5. 5.
    Berry, G.: The Constructive Semantics of Pure Esterel (1999).
  6. 6.
    Boulanger, F., Jacquet, C., Hardebolle, C., Prodan, I.: TESL: a language for reconciling heterogeneous execution traces. In: Twelfth ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2014), pp. 114–123. Lausanne, Switzerland, October 2014.
  7. 7.
    Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in HOL. J. Autom. Reasoning 41(3–4), 219–249 (2008). CrossRefzbMATHGoogle Scholar
  8. 8.
    Brucker, A.D., Wolff, B.: Monadic sequence testing and explicit test-refinements. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762, pp. 17–36. Springer, Cham (2016). doi: 10.1007/978-3-319-41135-4_2 Google Scholar
  9. 9.
    Cheng, B.H.C., Combemale, B., France, R.B., Jézéquel, J.-M., Rumpe, B. (eds.): Globalizing Domain-Specific Languages. LNCS, vol. 9400. Springer, Cham (2015)Google Scholar
  10. 10.
    Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity - the Ptolemy approach. In: Proceedings of the IEEE, pp. 127–144 (2003)Google Scholar
  11. 11.
    Garcés, K., Deantoni, J., Mallet, F.: A model-based approach for reconciliation of polychronous execution traces. In: SEAA 2011–37th EUROMICRO Conference on Software Engineering and Advanced Applications. IEEE, Oulu, Finland, August 2011.
  12. 12.
    Hardebolle, C., Boulanger, F.: Exploring multi-paradigm modeling techniques. Simul. Trans. Soc. Model. Simul. Int. 85(11/12), 688–708 (2009).
  13. 13.
    Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Methods Syst. Des. 34(3), 238–304 (2009). CrossRefzbMATHGoogle Scholar
  14. 14.
    Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation. IEEE Trans. CAD 17(12), 1217–1229 (1998)CrossRefGoogle Scholar
  15. 15.
    Mallet, F., Deantoni, J., André, C., De Simone, R.: The clock constraint specification language for building timed causality models. Innov. Syst. Softw. Eng. 6(1–2), 99–106 (2010). CrossRefGoogle Scholar
  16. 16.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi: 10.1007/3-540-45949-9 zbMATHGoogle Scholar
  17. 17.
    Schmaltz, J., Tretmans, J.: On conformance testing for timed systems. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85778-5_18 CrossRefGoogle Scholar
  18. 18.
    Tej, H., Wolff, B.: A corrected failure-divergence model for CSP in Isabelle/HOL. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 318–337. Springer, Heidelberg (1997). doi: 10.1007/3-540-63533-5_17 CrossRefGoogle Scholar
  19. 19.
    Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Softw. Concepts Tools 17(3), 103–120 (1996)zbMATHGoogle Scholar
  20. 20.
    Vara Larsen, M.E., Deantoni, J., Combemale, B., Mallet, F.: A Behavioral coordination operator language (BCOoL). In: 18th International Conference on Model Driven Engineering Languages and Systems (MODELS 2015), August 2015.
  21. 21.
    Viroli, M.: A core calculus for correlation in orchestration languages. J. Logic Algebraic Program. 70(1), 74–95 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Weeks, S.: Whole-program Compilation in MLton. In: Proceedings of the 2006 Workshop on ML. ML 2006, p. 1. ACM New York (2006).
  23. 23.
    Zhang, M., Mallet, F.: An executable semantics of clock constraint specification language and its applications. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 37–51. Springer, Cham (2016). doi: 10.1007/978-3-319-29510-7_2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hai Nguyen Van
    • 1
    Email author
  • Thibaut Balabonski
    • 1
  • Frédéric Boulanger
    • 2
  • Chantal Keller
    • 1
  • Benoît Valiron
    • 2
  • Burkhart Wolff
    • 1
  1. 1.LRI, Université Paris Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.LRI, CentraleSupélec, Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations