Distribution-Based Bisimulation for Labelled Markov Processes

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10419)

Abstract

In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.

References

  1. 1.
    Abate, A.: Approximation metrics based on probabilistic bisimulations for general state-space Markov processes: a survey. Electr. Notes Theor. Comput. Sci. 297, 3–25 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Abate, A., Katoen, J.-P., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control 16(6), 624–641 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_1 CrossRefGoogle Scholar
  4. 4.
    Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In: IEEE Symposium on Logic in Computer Science (LICS), pp. 149–158. IEEE Computer Society (1997)Google Scholar
  5. 5.
    van Breugel, F., Sharma, B., Worrell, J.: Approximating a behavioural pseudometric without discount for probabilistic systems. Logical Methods Comput. Sci. 4(2), 123–137 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Chaput, P., Danos, V., Panangaden, P., Plotkin, G.D.: Approximating Markov processes by averaging. J. ACM 61(1), 5:1–5:45 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Daca, P., Henzinger, T.A., Křetínský, J., Petrov, T.: Linear distances between Markov chains. In: Concurrency Theory (CONCUR). Leibniz International Proceedings in Informatics (LIPIcs), vol. 59, pp. 20:1–20:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  8. 8.
    Danos, V., Desharnais, J., Laviolette, F., Panangaden, P.: Bisimulation and cocongruence for probabilistic systems. Inf. Comput. 204(4), 503–523 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Danos, V., Desharnais, J., Panangaden, P.: Conditional expectation and the approximation of labelled markov processes. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 477–491. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45187-7_31 CrossRefGoogle Scholar
  10. 10.
    Danos, V., Desharnais, J., Panangaden, P.: Labelled Markov processes: stronger and faster approximations. Electr. Notes Theor. Comput. Sci. 87, 157–203 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    D’Argenio, P.R., Terraf, P.S., Wolovick, N.: Bisimulations for non-deterministic labelled Markov processes. Math. Struct. Comput. Sci. 22(1), 43–68 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Deng, Y.: Semantics of Probabilistic Processes. Springer, Heidelberg (2014)CrossRefMATHGoogle Scholar
  13. 13.
    Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimulation for labeled Markov processes. In: IEEE Symposium on Logic in Computer Science (LICS), pp. 478–487. IEEE Computer Society (1998)Google Scholar
  14. 14.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Inf. Comput. 179(2), 163–193 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating labelled Markov processes. Inf. Comput. 184(1), 160–200 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Doyen, L., Henzinger, T.A., Raskin, J.F.: Equivalence of labeled Markov chains. Int. J. Found. Comput. Sci. 19(3), 549–563 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Press, Belmont (2004)MATHGoogle Scholar
  19. 19.
    Feng, Y., Zhang, L.: When equivalence and bisimulation join forces in probabilistic automata. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 247–262. Springer, Cham (2014). doi:10.1007/978-3-319-06410-9_18 CrossRefGoogle Scholar
  20. 20.
    Ferns, N., Panangaden, P., Precup, D.: Bisimulation metrics for continuous Markov decision processes. SIAM J. Comput. 40(6), 1662–1714 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gebler, D., Larsen, K.G., Tini, S.: Compositional metric reasoning with probabilistic process calculi. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 230–245. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0_15 CrossRefGoogle Scholar
  22. 22.
    Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Asp. Comput. 24(4–6), 749–768 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hermanns, H., Krčál, J., Křetínský, J.: Probabilistic bisimulation: naturally on distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 249–265. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6_18 Google Scholar
  24. 24.
    Kemeny, J.G., Snell, J.L.: Finite Markov chains. Springer, Heidelberg (1960)MATHGoogle Scholar
  25. 25.
    Larsen, K.G., Skou, A.: Bisimulation through probablistic testing. Inf. Comput. 94(1), 1–28 (1991)CrossRefMATHGoogle Scholar
  26. 26.
    Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)CrossRefMATHGoogle Scholar
  27. 27.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2(2), 250–273 (1995)MathSciNetMATHGoogle Scholar
  28. 28.
    Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances via policy iteration. In: Concurrency Theory (CONCUR). LIPIcs, vol. 59, p. 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  29. 29.
    Terraf, P.S.: Unprovability of the logical characterization of bisimulation. CoRR abs/1005.5142 (2010)Google Scholar
  30. 30.
    Urabe, N., Hasuo, I.: Generic forward and backward simulations III: quantitative simulations by Matrices. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 451–466. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44584-6_31 Google Scholar
  31. 31.
    Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 460–470. Springer, Heidelberg (1997). doi:10.1007/3-540-63165-8_202 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Computer ScienceInstitute of Software, CASBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations