Calibrating Nutritionally Driven Selective Transport

  • Diane Gifford-Gonzalez
Chapter

Abstract

This chapter recounts zooarchaeologists’ efforts to more closely specify and standardize the variable nutritional values of different sections of animal bodies, as noted in Chap.  5. Their primary motivation was to understand the logic of human selectivity behind the element frequency structure in archaeofaunas. The chapter outlines Binford’s development of utility indices to calibrate the relative nutritional yields of different carcass segments, and his linkage of utilities with archaeofaunal elements frequencies through utility curves. It reviews species for which utility indices were developed, as well as early archaeofaunal analyses using these indices. The chapter describes a later simplification of Binford’s original calculations, the Food Utility Index (FUI) and discusses whether and how consideration of marrow, meat drying , and other utilities may be used to elucidate the choices behind archaeofaunal element frequencies.

Keywords

Butchery Hominin transport Selective transport Utility index MGUI FUI Return rate Drying index 

References

  1. Bar-Oz, G., & Munro, N. D. (2007). Gazelle bone marrow yields and Epipalaeolithic carcass exploitation strategies in the southern Levant. Journal of Archaeological Science, 34(6), 946–956.CrossRefGoogle Scholar
  2. Barlow, K. R., & Metcalfe, D. (1996). Plant utility indices: Two Great Basin examples. Journal of Archaeological Science, 23(3), 351–371.CrossRefGoogle Scholar
  3. Belardi, J. B., & Gómez Otero, J. (1998). Anatomía económica del huemul (Hippocamelus bisulcus): una contribución a la interpretación de las evidencias arqueológicas de su aprovechamiento en Patagonia. Anales de Instituto de la Patagonia (Serie Cs. Humanas), 26, 195–207.Google Scholar
  4. Bettinger, R. L., Malhi, R., & McCarthy, H. (1997). Central place models of acorn and mussel processing. Journal of Archaeological Science, 24(10), 887–899.CrossRefGoogle Scholar
  5. Binford, L. R. (1977). For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling. New York: Academic Press.Google Scholar
  6. Binford, L. R. (1978). Nunamiut Ethnoarchaeology. New York: Academic Press.Google Scholar
  7. Binford, L. R. (1980). Willow smoke and dogs' tails: Hunter-gatherer settlement systems and archaeology. American Antiquity, 45(1), 4–20.CrossRefGoogle Scholar
  8. Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic Press.Google Scholar
  9. Binford, L. R. (1984). Faunal remains from Klasies River Mouth. New York: Academic Press.Google Scholar
  10. Blumenschine, R. J., & Caro, T. M. (1986). Unit flesh weights of some East African bovids. African Journal of Ecology, 24(4), 273–286.Google Scholar
  11. Blumenschine, R. J., & Madrigal, T. C. (1993). Variability in long bone marrow yields of East African ungulates and its zooarchaeological implications. Journal of Archaeological Science, 20(5), 555–587.Google Scholar
  12. Borrero, L. A. (1990). Fuego-Patagonian bone assemblages and the problem of communal guanaco hunting. In L. B. Davis, & B. O. K. Reeves (Eds.), Hunters of the recent past (pp. 373–399, One World Archaeology). London: Unwin Hyman.Google Scholar
  13. De Nigris, M. E., & Mengoni Goñalons, G. (2005). The guanaco as a source of meat and fat in the southern Andes. In J. Mulville, & A. Outram (Eds.), The zooarchaeology of fats, oils, milk and dairying, (pp. 160–166). Oxford: Oxbow Books.Google Scholar
  14. Diab, M. C. (1998). Economic utility of the ringed seal (Phoca hispida): Implications for Arctic archaeology. Journal of Archaeological Science, 25(1), 1–26.CrossRefGoogle Scholar
  15. Emerson, A. M. (1990). Archaeological implications of variability in the economic anatomy of Bison bison. Doctoral dissertation, Washington State University, Pullman.Google Scholar
  16. Emerson, A. M. (1993). The role of body part utility in small-scale hunting under two strategies of carcass recovery. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 138–155, Occasional Paper, Vol. 21). Carbondale: Center for Archaeological Investigations, Southern Illinois University.Google Scholar
  17. Friesen, T. M. (2001). A zooarchaeological signature for meat storage: Re-thinking the drying utility index. American Antiquity, 66(2), 315–331.Google Scholar
  18. Grayson, D. K. (1989). Bone transport, bone destruction, and reverse utility curves. Journal of Archaeological Science, 16(6), 643–652.CrossRefGoogle Scholar
  19. Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., et al. (2008). Ages for the Middle Stone Age of southern Africa: Implications for human behavior and dispersal. Science, 322(5902), 733–735.Google Scholar
  20. Jones, K. T., & Metcalfe, D. (1988). Bare bones archaeology: bone marrow indices and efficiency.Journal of Archaeological Science, 15(4), 415–423.Google Scholar
  21. Krebs, J. R., & Davies, N. B. (1993). An introduction to behavioural ecology (3rd ed.). London: Blackwell Publishing.Google Scholar
  22. Lupo, K. D. (2001). Archaeological skeletal part profiles and differential transport: Ethnoarchaeological examples from Hadza bone assemblages. Journal of Anthropological Archaeology, 20(3), 361–378.CrossRefGoogle Scholar
  23. Lupo, K. D. (2006). What explains the carcass field processing and transport decisions of contemporary hunter-gatherers? Measures of economic anatomy and zooarchaeological skeletal part representation. Journal of Archaeological Method and Theory, 13(1), 19–66.Google Scholar
  24. Lyman, R. L. (1985). Bone frequencies, differential transport, and the MGUI. Journal of Archaeological Science, 12(3), 221–236.CrossRefGoogle Scholar
  25. Lyman, R. L. (1992). Anatomical considerations of utility curves in zooarchaeology. Journal of Archaeological Science, 19(1), 7–22.CrossRefGoogle Scholar
  26. Lyman, R. L., Savelle, J. M., & Whitridge, P. (1992). Derivation and application of a meat utility index for phocid seals. Journal of Archaeological Science, 19(5), 531–556.Google Scholar
  27. Madrigal, T. C. (2004). The derivation and application and white-tailed deer utility indices and return rates. Journal of of Taphonomy, 2(4), 185–199.Google Scholar
  28. Mengoni Goñalons, G. L. (1996). La domesticación de los camélidos sudamericanos y su anatomía económica. In D. C. Elkin, C. M. Madero, G. L. G. Mengoni, D. E. Olivera, M. C. Reigadas, & H. D. Yacobaccio (Eds.), Zooarqueología de Camélidos (Vol. 2, pp. 33–45). Buenos Aires: Grupo Zooarqueología de Camélidos.Google Scholar
  29. Metcalfe, D., & Jones, K. T. (1988). A reconsideration of animal body-part utility indices. American Antiquity, 53(3), 486–504.CrossRefGoogle Scholar
  30. Morin, E. (2007). Fat composition and Nunamiut decision-making: A new look at the marrow and bone grease indices. Journal of Archaeological Science, 34(1), 69–82.CrossRefGoogle Scholar
  31. O'Brien, M., & Liebert, T. A. (2014). Quantifying the energetic returns for pronghorn: A food utility index of meat and marrow. Journal of Archaeological Science, 46, 384–392.  https://doi.org/10.1016/j.jas.2014.03.024. CrossRefGoogle Scholar
  32. Outram, A. K., & Rowley-Conwy, P. (1998). Meat and marrow utility indices for horses (Equus). Journal of Archaeological Science, 25(9), 839–849.CrossRefGoogle Scholar
  33. Rowley-Conwy, P., Halstead, P., & Collins, P. (2002). Derivation and application of a food utility index (FUI) for European wild boar (Sus scrofa L.) Environmental Archaeology, 7(1), 77–88.CrossRefGoogle Scholar
  34. Savelle, J. M. (1997). The role of architectural utility in the formation of zooarchaeological whale bone assemblages. Journal of Archaeological Science, 24(10), 869–885.CrossRefGoogle Scholar
  35. Savelle, J. M., & Friesen, T. M. (1996). An odontocete (Cetacea) meat utility index. Journal of Archaeological Science, 23(5), 713–721.Google Scholar
  36. Savelle, J. M., Friesen, T. M., & Lyman, R. L. (1996). Derivation and application of an otariid utility index. Journal of Archaeological Science, 23(5), 705–712.Google Scholar
  37. Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McGraw Hill.Google Scholar
  38. Speth, J. D. (1983). Bison kills and bone counts: Decision making by ancient hunters. Chicago: University of Chicago Press.Google Scholar
  39. Speth, J. D., & Spielmann, K. A. (1983). Energy source, protein metabolism, and hunter-gatherer subsistence strategies. Journal of Anthropological Archaeology, 2(1), 1–31.CrossRefGoogle Scholar
  40. Thomas, D. H., & Mayer, D. (1983). Behavioral faunal analysis of selected horizons. In D. H. Thomas (Ed.), The archaeology of Monitor Valley: 2. Gatecliff Shelter (pp. 353–391, Anthropological Papers of the American Museum of Natural History, Vol. 59, Pt. 1).Google Scholar
  41. Turner, A. (1989). Sample selection, schlepp effects and scavenging: The implications of partial recovery for intepretations of the terrestrial mammal assemblage from Klasies River Mouth. Journal of Archaeological Science, 16(1), 1–11.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations