Culinary Processing and Preservational Effects on Bone

  • Diane Gifford-Gonzalez
Chapter

Abstract

This chapter discusses culinary and preservational processing as central aspects of the human adaptation, outlining gains in nutrition, reduction of mastication time and energy, and extension of animal product use-life. It agrees with authors who stressed the social nature of culinary practices and the central role these play in the social life of anatomically modern humans. It asserts that culinary processing and conservation of animal products has been understudied in zooarchaeology and advocates taking a chaîne opératoire approach to carcass processing that unifies all phases of human use of vertebrates for food. It returns to attribution of cut mark function within a chaîne opératoire approach to processing. Chapter 15 reviews nutritional gains realized by different forms of cooking. It summarizes osteological markers of culinary processing, including cut marks, bone grease production, thermal alteration to bone color and fracture morphology, breakage associated with pot-sizing, and the distinctive abrasion known as pot-polish. It argues that better understanding the nutritional gains and energetic costs of specific food processing strategies enables closer assessment of their social, economic, and evolutionary significance.

Keywords

Culinary processing Chaîne opératoire Thermal stress Burning Pot polish Pot sizing 

References

  1. Andrefsky, W. J. (2005). Lithics: macroscopic approaches to analysis (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  2. Attwell, L., Kovarovic, K., & Kendal, J. R. (2015). Fire in the Plio-Pleistocene: The functions of hominin fire use, and the mechanistic, developmental and evolutionary consequences. Journal of Anthropological Sciences, 93, 1–20.Google Scholar
  3. Bartram, L. E., Kroll, E. M., & Bunn, H. T. (1991). Variability in camp structure and bone food refuse patterning at Kua San hunter-gatherer camps. In E. M. Kroll, & T. D. Price (Eds.), The interpretation of archaeological spatial patterning (pp. 77–148, Interdisciplinary contributions to archaeology). New York: Plenum.Google Scholar
  4. Benco, N. L., Ettahiri, A., & Loyet, M. (2002). Worked bone tools: Linking metal artisans and animal processors in medieval Islamic Morocco. Antiquity, 76(292), 447–457.CrossRefGoogle Scholar
  5. Bennett, J. L. (1999). Thermal alteration of buried bone. Journal of Archaeological Science, 26(1), 1–8.CrossRefGoogle Scholar
  6. Binford, L. R. (1977). For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling. New York: Academic Press.Google Scholar
  7. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.Google Scholar
  8. Binford, L. R. (1980). Willow smoke and dogs’ tails: Hunter-gatherer settlement systems and archaeology. American Antiquity, 45(1), 4–20.CrossRefGoogle Scholar
  9. Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic Press.Google Scholar
  10. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15(5), 483–502.CrossRefGoogle Scholar
  11. Bogaard, A., Charles, M., Twiss, K. C., Fairbairn, A., Yalman, N., Filipović, D., et al. (2009). Private pantries and celebrated surplus: Storing and sharing food at Neolithic Çatalhöyük, central Anatolia. Antiquity, 83(321), 649–668.Google Scholar
  12. Bonnichsen, R. (1973). Some operational aspects of human and animal bone alteration. In B. M. Gilbert (Ed.), Mammalian osteoarchaeology: North America (pp. 9–24). Columbia: Missouri Archaeological Society.Google Scholar
  13. Bonnichsen, R., & Will, R. T. (1980). Cultural modification of bone: The experimental approach in faunal analysis. In B. M. Gilbert (Ed.), Mammalian osteology (pp. 7–30). Laramie: B.M. Gilbert.Google Scholar
  14. Bosch, P., Alemán, I., Moreno-Castilla, C., & Botella, M. (2011). Boiled versus unboiled: A study on Neolithic and contemporary human bones. Journal of Archaeological Science, 38(10), 2561–2570.  https://doi.org/10.1016/j.jas.2011.04.019.CrossRefGoogle Scholar
  15. Bowen, J. (1988). Seasonality: An agricultural construct. In M. C. Beaudry (Ed.), Documentary archaeology in the New World (pp. 161–171). Cambridge: Cambridge University Press.Google Scholar
  16. Brink, J. W. (1997). Fat content in leg bones of Bison bison, and applications to archaeology. Journal of Archaeological Science, 24(3), 259–274.CrossRefGoogle Scholar
  17. Buikstra, J. E., & Swegle, M. (1989). Bone modification due to burning: Experimental evidence. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 247–258). Orono: Center for the Study of the First Americans/Institute for Quaternary Studies/University of Maine.Google Scholar
  18. Bunn, H. T. (1993). Bone assemblages at base camps: A further consideration of carcass transport and bone destruction by the Hadza. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 156–168, Occasional paper, Vol. 21). Carbondale: Center for Archaeological Investigations/Southern Illinois University.Google Scholar
  19. Carmody, R. N., Weintraub, G. S., & Wrangham, R. W. (2011). Energetic consequences of thermal and nonthermal food processing. Proceedings of National Academy of Sciences, 108(48), 19199–19203.CrossRefGoogle Scholar
  20. Carr, C. J. (1977). Pastoralism in crisis. The Dasanetch and their Ethiopian lands, Research Paper, University of Chicago. Department of Geography, (Vol. 180). Chicago: University of Chicago Press.Google Scholar
  21. Church, R. R., & Lyman, R. L. (2003). Small fragments make small differences in efficiency when rendering grease from fractured artiodactyl bones by boiling. Journal of Archaeological Science, 30(8), 1077–1084.CrossRefGoogle Scholar
  22. Copley, M. S., Berstan, R., Dudd, S. N., Straker, V., Payne, S., & Evershed, R. P. (2005a). Dairying in antiquity. I. Evidence from absorbed lipid residues dating to the British Iron Age. Journal of Archaeological Science, 32(4), 485–503.CrossRefGoogle Scholar
  23. Copley, M. S., Berstan, R., Mukherjee, A. J., Dudd, S. N., Straker, V., Payne, S., et al. (2005b). Dairying in antiquity, III: Evidence from absorbed lipid residues dating to the British Neolithic. Journal of Archaeological Science, 32(4), 523–546.CrossRefGoogle Scholar
  24. Copley, M. S., Berstan, R., Straker, V., Payne, S., & Evershed, R. P. (2005c). Dairying in antiquity, II: Evidence from absorbed lipid residues dating to the British Bronze Age. Journal of Archaeological Science, 32(4), 505–521.CrossRefGoogle Scholar
  25. Costamagno, S., Théry-Parisot, I., Brugal, J.-P., & Guibert, R. (2005). Taphonomic consequences of the use of bones as fuel. Experimental data and archaeological consequences. In T. O’Connor (Ed.), Biosphere to lithosphere. New studies in vertebrate taphonomy (pp. 51–62). Oxford: Oxbow Books.Google Scholar
  26. Crader, D. C. (1984). The zooarchaeology of the Storehouse and the Dry Well at Monticello. American Antiquity, 49(3), 542–558.Google Scholar
  27. de Heinzelin, J., Clark, J. D., White, T. W., Hart, W., Renne, P., WoldeGabriel, G., et al. (1999). Environment and behavior of 2.5-million-year-old Bouri hominids. Science, 284(5414), 625–629.Google Scholar
  28. Deetz, J. F. (1996). In small things forgotten: An archaeology of early American life. New York: Anchor Books.Google Scholar
  29. Egeland, C. P., Rayne Pickering, T., Dominguez-Rodrigo, M., & Brain, C. K. (2004). Disentangling Early Stone Age palimpsests: Determining the functional independence of hominid- and carnivore-derived portions of archaeofaunas. Journal of Human Evolution, 47(5), 343–357.Google Scholar
  30. Emerson, A. M. (1993). The role of body part utility in small-scale hunting under two strategies of carcass recovery. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 138–155, Occasional paper, Vol. 21). Carbondale: Center for Archaeological Investigations/Southern Illinois University.Google Scholar
  31. Enloe, J. G. (1993). Ethnoarchaeology of marrow cracking: Implications for the recognition of prehistoric subsistence organization. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological contributions to the interpretation of faunal remains (pp. 82–97, Occasional paper, Vol. 21). Carbondale: Center for Archaeological Investigations/Southern Illinois University.Google Scholar
  32. Enloe, J. G., & David, F. (1992). In L. Hofman & J. G. Enloe (Eds.), Food sharing in the palaeolithic: Carcass refitting at Pincevent (Vol. 578, pp. 296–315). Oxford: British Archaeological Reports, International Series.Google Scholar
  33. Enloe, J. G., David, F., & Hare, T. S. (1994). Patterns of faunal processing at Section 27 of Pincevent: The use of spatial analysis and ethnoarchaeological data in the interpretation of archaeological site structure. Journal of Anthropological Archaeology, 13(2), 105–124.Google Scholar
  34. Fairgrieve, S. I. (2008). Forensic cremation: Recovery and analysis. Boca Raton: CRC Press.Google Scholar
  35. Frison, G. C. (Ed.). (1974). The Casper site: A Hell Gap bison kill on the High Plains. New York: Academic Press.Google Scholar
  36. Frison, G. C., & Reher, C. A. (1970). The Glenrock Buffalo Jump, 48CO304: Late prehistoric period buffalo procurement and butchering. Plains Anthropologist, 15(50), 1–45.Google Scholar
  37. Frison, G. C., & Todd, L. (Eds.). (1987). The Horner site: The type site of the Cody Cultural Complex. Orlando: Academic Press.Google Scholar
  38. Frison, G. C., Wilson, M., & Wilson, D. J. (1976). Fossil bison and artifacts from an early Altithermal period arroyo trap in Wyoming. American Antiquity, 41(1), 28–57.Google Scholar
  39. Gifford-Gonzalez, D. (1989). Ethnographic analogues for interpreting modified bones: Some cases from East Africa. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 179–246). Orono: Center for the Study of the First Americans/Institute for Quaternary Studies/University of Maine.Google Scholar
  40. Gifford-Gonzalez, D. (1993). Gaps in zooarchaeological analyses of butchery: Is gender an issue? In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 181–199, Occasional paper, Vol. 21). Carbondale: Center for Archaeological Investigations/Southern Illinois University Press.Google Scholar
  41. Gejvall, N.-G. (1969). Cremations. In D. R. Brothwell, & E. S. Higgs (Eds.), Science and archaeology. A survey of progress and research (pp. 468–479). London: Thames and Hudson.Google Scholar
  42. Gifford-Gonzalez, D. (2008). Thoughts on a method for zooarchaeological study of daily life. In S. Montón Subias, & M. Sánchez Romero (Eds.), Engendering social dynamics: The archaeology of maintenance activities (pp. 15–23, BAR international series, Vol. 1862). Oxford, UK: Archaeopress.Google Scholar
  43. Graff, S. R., & Rodríguez-Alegría, E. (Eds.). (2012). The menial art of cooking: Archaeological studies of cooking and food preparation. Boulder: University Press of Colorado.Google Scholar
  44. Grantham, B. (1995). Dinner in Buqata: The symbolic nature of food animals and meal sharing in a Druze village. In P. J. Crabtree, & K. Ryan (Eds.), The symbolic role of animals in archaeology, MASCA Research Papers in Science and Archaeology (Vol. 12, pp. 73–78). Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology.Google Scholar
  45. Habicht-Mauche, J. A. (2006). The social history of the Southwestern Glaze Wares. In J. Habicht-Mauche, S. L. Eckert, & D. L. Huntley (Eds.), The social life of pots: Glaze wares and cultural dynamics in the Southwest, AD 1250–1680 (pp. 3–16). Tucson: University of Arizona Press.Google Scholar
  46. Guilday, J. E., Parmalee, P., & Tanner, D. P. (1962). Aboriginal butchering techniques at the Eschelman Site (36LA12), Lancaster County, Pennsylvania. Pennsylvania Archaeologist, 32,59–83.Google Scholar
  47. Hoberg, E. P., Alkire, N. L., Queiroz, A. D., & Jones, A. (2001). Out of Africa: Origins of the Taenia tapeworms in humans. Proceedings of the Royal Society of London: Biological Sciences, 268(1469), 781–787.Google Scholar
  48. Holden, J. L., Phakey, P. P., & Clement, J. G. (1995a). Scanning electron microscope observations of heat-treated human bone. Forensic Science International, 74(1–2), 29–45.CrossRefGoogle Scholar
  49. Holden, J. L., Phakey, P. P., & Clement, J. G. (1995b). Scanning electron microscope observations of incinerated human femoral bone: A case study. Forensic Science International, 74(1–2), 17–28.CrossRefGoogle Scholar
  50. Janzen, A., Reid, R. E. B., Vasquez, A., & Gifford-Gonzalez, D. (2014). Smaller fragment size facilitates energy-efficient bone grease production. Journal Archaeological Science, 49, 518–523.CrossRefGoogle Scholar
  51. Koon, H. E. C., Nicholson, R. A., & Collins, M. J. (2003). A practical approach to the identification of low temperature heated bone using TEM. Journal of Archaeological Science, 30(11), 1393–1399.CrossRefGoogle Scholar
  52. Koon, H. E. C., O'Connor, T. P., & Collins, M. J. (2010). Sorting the butchered from the boiled. Journal of Archaeological Science, 37(1), 62–69.  https://doi.org/10.1016/j.jas.2009.08.015.CrossRefGoogle Scholar
  53. Leechman, D. (1951). Bone grease. American Antiquity, 16(4), 355–356.CrossRefGoogle Scholar
  54. Lemonnier, P. (1986). The study of material culture today: Toward an anthropology of technical systems. Journal of Anthropological Archaeology, 5(2), 147–186.CrossRefGoogle Scholar
  55. Leonard, W. R., Snodgrass, J. J., & Robertson, M. L. (2007). Effects of brain evolution on human nutrition and metabolism. Annual Review of Nutrition, 27, 311–327.CrossRefGoogle Scholar
  56. Lupo, K. D. (2006). What explains the carcass field processing and transport decisions of contemporary hunter-gatherers? Measures of economic anatomy and zooarchaeological skeletal part representation. Journal of Archaeological Method and Theory, 13(1), 19–66.Google Scholar
  57. Lupo, K. D., & Schmitt, D. N. (1997). Experiments in bone boiling: Nutritional returns and archaeological reflections. Anthropozoologica, 25–26, 137–144.Google Scholar
  58. Lyman, R. L. (1987). Archaeofaunas and butchery studies: A taphonomic perspective. Advances in Archaeological Method and Theory, 10,249–337.Google Scholar
  59. Lyman, R. L. (1995). A study of variation in the prehistoric butchery of large artiodactyls. In E. M. Johnson (Ed.), Ancient peoples and landscapes (pp. 233–253). Lubbock: Museum of Texas Tech University.Google Scholar
  60. Marean, C. W. (1998). A critique of the evidence for scavenging by Neandertals and early modern humans: New data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 Layer 10 (South Africa). Journal of Human Evolution, 35(2), 111–136.CrossRefGoogle Scholar
  61. Marshall, F. B. (1990). Cattle herds and caprine flocks. In P. T. Robertshaw (Ed.), Early pastoralists of south-western Kenya (pp. 205–260). Nairobi: British Institute in Eastern Africa.Google Scholar
  62. Miracle, P. T. (2002). Mesolithic meals from Mesolithic middens. In P. T. Miracle & N. Milner (Eds.), Consuming passions and patterns of consumption (pp. 65–88). Cambridge, UK: McDonald Institute for Archaeological Research.Google Scholar
  63. Montón Subías, S. (2002). Cooking in zooarchaeology: is this issue still raw? In P. Miracle, & N. Milner (Eds.), Consuming passions and patterns of consumption (pp. 7-15). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  64. Muir, R. J., & Driver, J. C. (2002). Scale of analysis and zooarchaeological interpretation: Pueblo III faunal varation in the northern San Juan region. Journal of Anthropological Archaeology, 21(2), 165–199.CrossRefGoogle Scholar
  65. Nicholson, R. A. (1992). Bone survival: The effects of sedimentary abrasion and trampling on fresh and cooked bone. International Journal of Osteoarchaeology, 2(1), 79–90.CrossRefGoogle Scholar
  66. Nicholson, R. A. (1993). A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology. Journal of Archaeological Science, 20(4), 411–428.CrossRefGoogle Scholar
  67. O'Connell, J. F., & Marshall, B. (1989). Analysis of kangaroo body part transport among the Alyawara of central Australia. Journal of Archaeological Science, 16(4), 393–405.Google Scholar
  68. O'Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44(2), 113–161.CrossRefGoogle Scholar
  69. O'Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1990). Reanalysis of large mammal body part transport among the Hadza. Journal of Archaeological Science, 17(3), 301–316.CrossRefGoogle Scholar
  70. O'Connor, T. P. (1993). Process and terminology in mammal carcass reduction. International Journal of Osteoarchaeology, 3(2), 63–67.CrossRefGoogle Scholar
  71. Oliver, J. S. (1993). Carcass processing by the Hadza: Bone breakage from butchery to consumption. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 200–227, Occasional paper, Vol. 21). Carbondale: Center for Archaeological Investigations/Southern Illinois University Press.Google Scholar
  72. Outram, A. K. (2001). A new approach to identifying bone marrow and grease exploitation: Why the “Indeterminate” fragments should not be ignored. Journal of Archaeological Science, 28(4), 401–410.CrossRefGoogle Scholar
  73. Outram, A. K. (2002). Bone fracture and within-bone nutrients: An experimentally based method for investigating levels of marrow extraction. In P. T. Miracle & N. Milner (Eds.), Consuming passions and patterns of consumption (pp. 51–64). Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  74. Pelegrin, J., Karlin, C., & Bodu, P. (1988). Chaînes opératoires: un outil pour le préhistorien. In J. Tixier (Ed.), Journée d'Études Technologiques en Préhistoire (pp. 55–62, Notes et Monographies Techniques, Vol. 25). Paris: Centre National de la Recherche Scientifique.Google Scholar
  75. USDA Agricultural Research Service. (2008). Nutrient Data. http://www.ars.usda.gov/main/site_main.htm?modecode=12354500. Accessed 10.18.2008.
  76. Pozorski, S. (1979). Late prehistoric llama remains from the Moche Valley, Peru. Annals of the Carnegie Museum, 48, 139–170.Google Scholar
  77. Richter, J. (1986). Experimental study of heat induced morphological changes in fish bone collagen. Journal of Archaeological Science, 13(5), 477–481.CrossRefGoogle Scholar
  78. Russell, N., & Martin, L. (2005). Çatalhöyük Mammal Remains. In I. Hodder (Ed.), Inhabiting Çatalhöyük: Reports from the 1995–1999 Seasons (pp. 33–98, Çatalhöyük Research Project Volume 4, BIAA Monograph No. 38). Cambridge: McDonald Institute for Archaeological Research and the British Institute of Archaeology at Ankara.Google Scholar
  79. Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.Google Scholar
  80. Seetah, K. (2008). Modern analogy, cultural theory and experimental replication: A merging point at the cutting edge of archaeology. World Archaeology, 40(1), 135–150.CrossRefGoogle Scholar
  81. Semaw, S. (2000). The world’s oldest stone artefacts from Gona, Ethiopia: Their implications for understanding stone technology and patterns of human evolution between 2·6–1·5 million years ago. Journal of Archaeological Science, 27(12), 1197–1214.CrossRefGoogle Scholar
  82. Shahack-Gross, R., Bar-Yosef, O., & Wiener, S. (1997). Black-coloured bones in Hayonim Cave, Israel: Differentiating between burning and oxide staining. Journal of Archaeological Science, 24(5), 439–446.Google Scholar
  83. Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science, 11(4), 307–325.CrossRefGoogle Scholar
  84. Speth, J. D., & Spielmann, K. A. (1983). Energy source, protein metabolism, and hunter-gatherer subsistence strategies. Journal of Anthropological Archaeology, 2(1), 1–31.CrossRefGoogle Scholar
  85. Stahl, P. W., & Zeidler, J. A. (1990). Differential bone-refuse accumulation in food-preparation and traffic areas on an early Ecuadorian house floor. Latin American Antiquity, 1(2), 150–169.Google Scholar
  86. Stiner, M. C., Kuhn, S. L., Weiner, S., & Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 22(2), 223–237.CrossRefGoogle Scholar
  87. Stopp, M. P. (2002). Ethnohistoric analogues for storage as an adaptive strategy in northeastern subarctic prehistory. Journal of Anthropological Archaeology, 21(3), 301–328.CrossRefGoogle Scholar
  88. Taylor, R. E., Hare, P. E., & White, T. D. (1995). Geochemical criteria for thermal alteration of bone. Journal of Archaeological Science, 22(1), 115–119.CrossRefGoogle Scholar
  89. Théry-Parisot, I. (2002). Fuel management (bone and wood) during the Lower Aurignacian in the Pataud Rock Shelter (Lower Palaeolithic, Les Éyzies de Tayac, Dordogne, France). Contribution of experimentation. Journal of Archaeological Science, 29(12), 1415–1421.Google Scholar
  90. Thoms, A. V. (2008). The fire stones carry: Ethnographic records and archaeological expectations for hot-rock cookery in western North America. Journal of Anthropological Archaeology, 27(4), 443–460.CrossRefGoogle Scholar
  91. Thoms, A. V. (2009). Rocks of ages: Propagation of hot-rock cookery in western North America. Journal of Archaeological Science, 36(3), 573–591.CrossRefGoogle Scholar
  92. Ungar, P. S., Grine, F. E., & Teaford, M. F. (2006). Diet in early Homo: A review of the evidence and a new model of adaptive versatility. Annual Review of Anthropology, 35, 209–228.Google Scholar
  93. Vitelli, K. D. (2007). The Neolithic pottery from Lerna. Athens: American School of Classical Studies at Athens.Google Scholar
  94. Wandsnider, L. (1997). The roasted and the boiled: Food composition and heat treatment with special emphasis on pit-hearth cooking. Journal of Anthropological Archaeology, 16(1), 1–48.CrossRefGoogle Scholar
  95. Wheat, J. B. (1972). The Olsen-Chubbuck site: A Paleo-Indian bison kill. Memoirs of the Society for American Archaeology, 26(i-ix), 1–180.Google Scholar
  96. White, T. D. (1992). Prehistoric cannibalism at Mancos 5MTUMR-2346. Princeton: Princeton University Press.CrossRefGoogle Scholar
  97. Wrangham, R. W. (2009). Catching fire: how cooking made us human. New York: Basic Books.Google Scholar
  98. Wrangham, R. W. (2017). Control of fire in the paleolithic: Evaluating the cooking hypothesis. Current Anthropology, 58(Supplement 16), S000 not available.  https://doi.org/10.1086/692113.
  99. Yellen, J. E. (1977). Archaeological approaches to the present: Models for reconstructing the past. New York: Academic Press.Google Scholar
  100. Yellen, J. E. (1991). Small mammals: !Kung San utilization and the production of faunal assemblages. Journal of Anthropological Archaeology, 10(1), 1–26.CrossRefGoogle Scholar
  101. Zink, K. D., & Lieberman, D. E. (2016). Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. [Letter]. Nature, 531(7595), 500–503.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations