Advertisement

Onychomycosis: Laboratory Methods

  • Mahmoud Ghannoum
  • Nancy Isham
Chapter

Abstract

Onychomycosis is caused by dermatophytes, and to a lesser extent by non-dermatophyte moulds (NDMs), and Candida spp. It is important to identify the causative agent of each case of onychomycosis in order to provide the proper management, which includes antifungal therapy, possible physical debridement, and expectant prognosis. This chapter provides guidelines for the proper collection of nail specimens for direct smear and culture. Additionally, various methods for performing direct examinations of clinical material are included, as well as descriptions of both conventional laboratory methods and molecular assays for identifying these fungal species. In cases of treatment failure, it is also important to have a means of determining an infecting organism’s susceptibility to available antifungals. Various susceptibility assays, including broth microdilution and agar diffusion, are compared. Finally, the importance of proper laboratory diagnosis of onychomycosis to the success of clinical trials of novel antifungals is discussed, with an emphasis on the role of negative microscopy in the definition of mycological cure.

Keywords

API Calcofluor Candida albicans ChromAgar Dermatophytes DTM Germ tube Hair perforation Inhibitory mould agar KOH MALDI-TOF MS Mycological cure Mycosel Non-dermatophyte moulds PAS PCR Potato dextrose agar Susceptibility Trichophyton agars 

References

  1. 1.
    Chi CC, Wang SH, Chou MC. The causative pathogens of onychomycosis in southern Taiwan. Mycoses. 2005;48:413–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Foster KW, Ghannoum MA, Elewski BE. Epidemiologic surveillance of cutaneous fungal infection in the United States from 1999 to 2002. J Am Acad Dermatol. 2004;50:748–52.CrossRefGoogle Scholar
  3. 3.
    Havlickova A, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(S4):2–15.CrossRefGoogle Scholar
  4. 4.
    Raghavendra KR, Yadav D, Kumar A, et al. The nondermatophyte molds: emerging as leading cause of onychomycosis in south-east Rajasthan. Indian Dermatol Online J. 2015;6(2):92–7.  https://doi.org/10.4103/2229-5178.153010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Crawford F, Young P, Godfrey C, et al. Oral treatments for toenail onychomycosis: a systematic review. Arch Dermatol. 2002;138:811–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Ghannoum M. Azole resistance in dermatophytes: prevalence and mechanism of action. J Am Podiatr Med Assoc. 2016;106(1):79–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Odds FC. In Candida albicans, resistance to flucytosine and terbinafine is linked to MAT locus homozygosity and multilocus sequence typing clade 1. FEMS Yeast Res. 2009;9(7):1091–101.  https://doi.org/10.1111/j.1567-1364.2009.00577.CrossRefPubMedGoogle Scholar
  8. 8.
    Sigurgeirsson B, Olafsson JH, Steinsson JB, et al. Long-term effectiveness of treatment with terbinafine vs itraconazole in onychomycosis: a 5-year blinded prospective follow-up study. Arch Dermatol. 2002;138:353–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Ghannoum M, Isham N, Catalano V. A second look at efficacy criteria for onychomycosis: clinical and mycological cure. Br J Dermatol. 2014;170(1):182–7.  https://doi.org/10.1111/bjd.12594.CrossRefPubMedGoogle Scholar
  10. 10.
    Bet DL, Dos Reis AL, Di Chiacchio N, et al. Dermoscopy and onychomycosis: guided nail abrasion for mycological samples. An Bras Dermatol. 2015;90(6):904–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McGinnis MR. Laboratory handbook of medical mycology. New York: Academic Press; 1980.Google Scholar
  12. 12.
    Larone D. In medically important fungi: a guide to identification. Washington, DC: ASM Press; 2002.Google Scholar
  13. 13.
    Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11(3):415–429. 15. Google Scholar
  14. 14.
    Murray PR. In manual of clinical microbiology. Washington, DC: ASM Press; 1995.Google Scholar
  15. 15.
    Souza MN, Ortiz SO, Mello MM, et al. Comparison between four usual methods of identification of Candida species. Rev Inst Med Trop Sao Paulo. 2015;57(4):281–7.  https://doi.org/10.1590/S0036-46652015000400002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meletiadis J, Arabatzis M, Bompola M, et al. Comparative evaluation of three commercial identification systems using common and rare bloodstream yeast isolates. J Clin Microbiol. 2011;49(7):2722–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pharaon M, Gari-Toussaint M, Khemis A, et al. Diagnosis and treatment monitoring of toenail onychomycosis by reflectance confocal microscopy: prospective cohort study in 58 patients. J Am Acad Dermatol. 2014;71(1):56–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Jeelani S, Ahmed QM, Lanker AM, et al. Histopathological examination of nail clippings using PAS staining (HPE-PAS): gold standard in diagnosis of onychomycosis. Mycoses. 2015;58(1):2732.  https://doi.org/10.1111/myc.12251.CrossRefGoogle Scholar
  19. 19.
    Jung MY, Shim JH, Lee JH, et al. Comparison of diagnostic methods for onychomycosis, and proposal of a diagnostic algorithm. Clin Exp Dermatol. 2015;40(5):479–84.  https://doi.org/10.1111/ced.12593.CrossRefPubMedGoogle Scholar
  20. 20.
    Shenoy MM, Teerthanath S, Karnaker VK, et al. Comparison of potassium hydroxide mount and mycological culture with histopathologic examination using periodic acid-Schiff staining of the nail clippings in the diagnosis of onychomycosis. Indian J Dermatol Venereol Leprol. 2008;74(3):226–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Wilsmann-Theis D, Sareika F, Bieber T, et al. New reasons for histopathological nail-clipping examination in the diagnosis of onychomycosis. J Eur Acad Dermatol Venereol. 2011;25(2):235–7.  https://doi.org/10.1111/j.1468-3083.2010.03704.CrossRefPubMedGoogle Scholar
  22. 22.
    Mayer E, Izhak OB, Bergman R. Histopathological periodic acid-schiff stains of nail clippings as a second-line diagnostic tool in onychomycosis. Am J Dermatopathol. 2012;34(3):270–3.  https://doi.org/10.1097/DAD.0b013e318234cc49.CrossRefPubMedGoogle Scholar
  23. 23.
    Machler BC, Kirsner RS, Elgart GW. Routine histologic examination for the diagnosis of onychomycosis: an evaluation of sensitivity and specificity. Cutis. 1998;61(4):217–9.PubMedGoogle Scholar
  24. 24.
    Binstock JM. Molecular biology techniques for identifying dermatophytes and their possible use in diagnosing onychomycosis in human toenail: a review. J Am Podiatr Med Assoc. 2007;97:134–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Kanbe T. Molecular approaches in the diagnosis of dermatophytosis. Mycopathologia. 2008;166:307–17.CrossRefPubMedGoogle Scholar
  26. 26.
    Shehata AS, Mukherjee PK, Aboulatta HN, et al. Single-step PCR using (GACA)4 primer: utility for rapid identification of dermatophyte species and strains. J Clin Microbiol. 2008;46(8):2641–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bock M, Maiwald M, Kappe R, et al. Polymerase chain reaction-based detection of dermatophyte DNA with a fungus-specific primer system. Mycoses. 1994;37:79–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Bock M, Nickel P, Maiwald M, et al. Diagnosis of dermatomycoses with polymerase chain reaction. Hautarzt. 1997;48:175–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Baek SC, Chae HJ, Houh D, et al. Detection and differentiation of causative fungi of onychomycosis using PCR amplification and restriction enzyme analysis. Int J Dermatol. 1998;37:682–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Wieser A, Schneider L, Jung J, et al. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 2012;93(3):965–74.CrossRefPubMedGoogle Scholar
  31. 31.
    DeRespinis S, Monnin V, Girard V, et al. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry using the Vitek MS system for rapid and accurate identification of dermatophytes on solid cultures. J Clin Microbiol. 2014;52(12):4286–92.CrossRefGoogle Scholar
  32. 32.
    Karabicak N, Karatuna O, Ilkit M, et al. Evaluation of the Bruker matrix- assisted laser desorption-ionization time-of flight mass spectrometry (MALDI_TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia. 2015;180(3–4):165–71.CrossRefPubMedGoogle Scholar
  33. 33.
    Mehul B, Gu Z, Jomard A, et al. Sub6(TRI r 2), an onychomycosis marker revealed by proteomics analysis of Trichophyton rubrum secreted proteins in patient nail samples. J Invest Dermatol. 2016;136(1):331–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Niewerth M, Splanemann V, Korting H, et al. Antimicrobial susceptibility testing of dermatophytes – comparison of the agar macrodilution and broth microdilution tests. Chemotherapy. 1998;44:31–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Granade TC, Artis WM. Antimycotic susceptibility testing of dermatophytes in microcultures with a standardized fragmented mycelial inoculum. Antimicrob Agents Chemother. 1980;17:725–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, CLSI document M38- A2 [ISBN 1-56238-668-9]. 2nd ed. Wayne: CLSI; 2008a.Google Scholar
  37. 37.
    Ghannoum MA, Chaturvedi V, Espinel-Ingroff A, et al. Intra- and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol. 2004;42(7):2977–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Norris HA, Elewski BE, Ghannoum MA. Optimal growth conditions for the determination of the antifungal susceptibility of three species of dermatophytes with the use of a microdilution method. J Am Acad Dermatol. 1999;40(6):S9–S13.CrossRefPubMedGoogle Scholar
  39. 39.
    Jessup CJ, Warner J, Isham N, et al. Antifungal susceptibility testing of dermatophytes: establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J Clin Microbiol. 2000;38:341–4.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, et al. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of dermatophytes to antifungals. J Clin Microbiol. 2006;44:4353–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    CLSI. Method for antifungal disk diffusion susceptibility testing of yeasts: approved guideline, CLSI M44-A2 (ISBN 1-56238-532-1). 2nd ed. Wayne: CLSI; 2009.Google Scholar
  42. 42.
    Alp S, Sancak B, Hascelik G, et al. Influence of different susceptibility testing methods and media on determination of the relevant fluconazole minimum inhibitory concentrations for heavy trailing Candida isolates with low-high phenotype. Mycoses. 2010;53(6):475–80.CrossRefPubMedGoogle Scholar
  43. 43.
    Pfaller MA, Messer SA, Mills K, et al. Evaluation of Etest method for determining posaconazole MICs for 314 clinical isolates of Candida species. J Clin Microbiol. 2001;39(11):3952–4.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, CLSI document M27-A3. 3rd ed. Wayne: Clinical and Laboratory Standards Institute, CLSI; 2008b.Google Scholar
  45. 45.
    Canton E, Peman J, Iniguez C, et al. Epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole for six Candida species as determined by the colorimetric Sensititre YeastOne method. J Clin Microbiol. 2013;51(8):2691–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pfaller MA, Chaturvedi V, Diekema DJ, et al. Comparison of the Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility testing of the echinocandins against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis. 2012;73(4):365–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Steifel Laboratories. Addendum to original medical officer’s review of NDA 22-484. Food and Drug Administration, Center for Drug Evaluation and Research; 2010.Google Scholar
  48. 48.
    Del Rosso JQ. Advances in the treatment of superficial fungal infections: focus on onychomycosis and dry tinea pedis. J Am Osteopath Assoc. 1997;97:339–436.CrossRefPubMedGoogle Scholar
  49. 49.
    Orentreich N, Markovsky J, Vogelman JH. The effect of aging on the rate of linear nail growth. J Invest Dermatol. 1979;73:126–30.CrossRefPubMedGoogle Scholar
  50. 50.
    Scher RK, Tavakkol A, Sigurgeirsson B, et al. Onychomycosis: diagnosis and definition of cure. J Am Acad Dermatol. 2007;56(6):939–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Medical Mycology, University Hospitals Cleveland Medical Center and Case Western Reserve UniversityClevelandUSA

Personalised recommendations