Advertisement

Synchronization in Interacting Reinforced Stochastic Processes

Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

We present a family of interacting stochastic processes introduced in [13] whose individual dynamics follow a reinforcement updating rule. This is a natural generalization of PCA dynamics on a continuous spin space. The interaction changes the long-time behavior of each process and the speed of evolution, producing a phenomenon of synchronization.

Keywords

Generalized PCA with continuous spin space Synchronization Reinforced stochastic processes Pólya urns Mean field interaction 

References

  1. 1.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)CrossRefGoogle Scholar
  2. 2.
    Aletti, G., Ghiglietti, A.: Interacting generalized Friedman’s urn systems. Stoch. Process. Appl. (2016)Google Scholar
  3. 3.
    Aletti, G., Crimaldi, I., Ghiglietti, A.: Synchronization of reinforced stochastic processes with a network-based interaction. arXiv:1607.08514
  4. 4.
    Alonso-Sanz, R.: Discrete Systems with Memory. World Scientific Series on Nonlinear Science Series A, vol. 75. World Scientific, Singapore (2011)Google Scholar
  5. 5.
    Arenas, A., Díaz-guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks 469(3), 93–153 (2008)Google Scholar
  6. 6.
    Berglund, N., Fernandez, B., Gentz, B.: Metastability in interacting nonlinear stochastic differential equations: I. From weak coupling to synchronization. Nonlinearity 20(11), 2551–2581 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bertini, L., Giacomin, G., Poquet, C.: Synchronization and random long time dynamics for mean-field plane rotators. Probab. Theory Relat. Fields 1–61 (2013)Google Scholar
  8. 8.
    Birkner, M., Depperschmidt, A.: Survival and complete convergence for a spatial branching system with local regulation. Ann. Appl. Probab. 17(5/6), 1777–1807 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, N., Glazier, J.A., Alber, M.S.: A parallel implementation of the cellular potts model for simulation of cell-based morphogenesis, pp. 58–67Google Scholar
  10. 10.
    Collet, F., Dai Pra, P., Sartori, E.: A simple mean field model for social interactions: dynamics, fluctuations, criticality, pp. 1–37 (2010)Google Scholar
  11. 11.
    Crimaldi, I., Dai Pra, P., Minelli, I.G.: Fluctuation theorems for synchronization of interacting Polya urns. Stoch. Process. Appl. 126(3), 930–947 (2016)CrossRefMATHGoogle Scholar
  12. 12.
    Crimaldi, I., Dai Pra, P., Louis, P.Y., Minelli, I.G.: Syncronization and functional central limit theorems for interacting reinforced random walks (2016). arXiv:1602.06217
  13. 13.
    Dai Pra, P., Louis, P.Y., Minelli, I.G.: Synchronization via interacting reinforcement. J. Appl. Probab. 51(2), 556–568 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Davis, B.: Reinforced random walk. Probab. Theory Relat. Fields 84(2), 203–229 (1990)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69(11), 1629–1632 (1992)CrossRefGoogle Scholar
  16. 16.
    Freedman, D.A.: Bernard Friedman’s urn. Ann. Math. Stat. 36(3), 956–970 (1965)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Friedman, B.: A simple urn model. Commun. Pure Appl. Math. 2(1), 59–70 (1949)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Jahnel, B., Kuelske, C.: Synchronization for discrete mean-field rotators. Electron. J. Probab. 19(14), 1–26 (2014)MathSciNetGoogle Scholar
  19. 19.
    Kaneko, K.: Simulating Spatiotemporal Chaos with Coupled Map Lattices. Springer Proceedings in Physics, pp. 260–271. Springer, Berlin (1992)Google Scholar
  20. 20.
    Launay, M.: Interacting urn models (2012). arXiv:1101.1410
  21. 21.
    Launay, M., Limic, V.: Generalized interacting urn models (2012). arXiv:1207.5635
  22. 22.
    Mahmoud, H.M.: Pólya Urn Models. CRC Press, Boca Raton (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Métivier, M.: Semimartingales, de Gruyter Studies in Mathematics, vol. 2. Walter de Gruyter & Co., Berlin (1982)Google Scholar
  24. 24.
    Paganoni, A.M., Secchi, P.: Interacting reinforced-urn systems. Adv. Appl. Probab. 36(3), 791–804 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4(1–79), 25 (2007)MathSciNetMATHGoogle Scholar
  26. 26.
    Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: Synchronization: a universal concept in nonlinear science. Am. J. Phys. 70(6), 655–655 (2002)CrossRefGoogle Scholar
  27. 27.
    Sahasrabudhe, N.: Synchronization and fluctuation theorems for interacting Friedman urns. J. Appl. Probab. 53(4), 1221–1239 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Strogatz, S.: Review of sync: the emerging science of spontaneous order (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Applications UMR 7348Université de Poitiers, CNRSPoitiersFrance
  2. 2.Dipartimento di Ingegneria e scienze dell’informazione e matematicaUniversitá dell’AquilaL’AquilaItaly

Personalised recommendations