Advertisement

Power-Performance Evaluation of Parallel Multi-objective EEG Feature Selection on CPU-GPU Platforms

  • Juan José Escobar
  • Julio OrtegaEmail author
  • Antonio Francisco Díaz
  • Jesús González
  • Miguel Damas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10393)

Abstract

Heterogeneous CPU-GPU platforms include resources to benefit from different kinds of parallelism present in many data mining applications based on evolutionary algorithms that evolve solutions with time-demanding fitness evaluation. This paper describes an evolutionary parallel multi-objective feature selection procedure with subpopulations using two scheduling alternatives for evaluation of individuals according to the number of subpopulations. Evolving subpopulations usually provides good diversity properties and avoids premature convergence in evolutionary algorithms. The proposed procedure has been implemented in OpenMP to distribute dynamically either subpopulations or individuals among devices and OpenCL to evaluate the individuals taking into account the devices characteristics, providing two parallelism levels in CPU and up to three levels in GPUs. Different configurations of the proposed procedure have been evaluated and compared with a master-worker approach considering not only the runtime and achieved speedups but also the energy consumption between both scheduling models.

Keywords

Heterogeneous subpopulations scheduling Energy-aware computing EEG classification Multi-objective feature selection GPU 

Notes

Acknowledgements

Work funded by project TIN2015-67020-P (Spanish “Ministerio de Economía y Competitividad” and ERDF funds). We would also like to thank the BCI laboratory of the University of Essex, and especially prof. John Q. Gan, for allowing us to use their databases.

References

  1. 1.
    Escobar, J.J., Ortega, J., González, J., Damas, M.: Assessing parallel heterogeneous computer architectures for multiobjective feature selection on EEG classification. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 277–289. Springer, Cham (2016). doi: 10.1007/978-3-319-31744-1_25 CrossRefGoogle Scholar
  2. 2.
    Escobar, J., Ortega, J., González, J., Damas, M.: Improving memory accesses for heterogeneous parallel multi-objective feature selection on EEG classification. In: Proceedings of the 4th International Workshop on Parallelism in Bioinformatics, PBIO 2016, pp. 372–383. Springer, Grenoble, August 2016Google Scholar
  3. 3.
    Escobar, J., Ortega, J., González, J., Damas, M., Prieto, B.: Issues on GPU parallel implementation of evolutionary high-dimensional multi-objective feature selection. In: Proceedings of the 20th European Conference on Applications of Evolutionary Computation, Part I, EVOSTAR 2017, pp. 773–788. Springer, Amsterdam, April 2017Google Scholar
  4. 4.
    Rupp, R., Kleih, S., Leeb, R., Millan, J., Kübler, A., Müller-Putz, G.: Brain-computer interfaces and assistive technology. In: Grübler, G., Hildt, E. (eds.) Brain-Computer-Interfaces in their Ethical, Social and Cultural Contexts. The International Library of Ethics, Law and Technology, pp. 7–38. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Vega, F.F., Chávez, F., Díaz, J., García, J.A., Castillo, P.A., Merelo, J.J., Cotta, C.: A cross-platform assessment of energy consumption in evolutionary algorithms. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 548–557. Springer, Cham (2016). doi: 10.1007/978-3-319-45823-6_51 CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)CrossRefGoogle Scholar
  7. 7.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.: A survey of multiobjective evolutionary algorithms for data mining: Part II. IEEE Trans. Evol. Comput. 18(1), 20–35 (2014)CrossRefGoogle Scholar
  8. 8.
    Handl, J., Knowles, J.: Feature subset selection in unsupervised learning via multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 217–238 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi: 10.1007/3-540-45356-3_83 CrossRefGoogle Scholar
  10. 10.
    Collet, P.: Why GPGPUS for evolutionary computation? In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp. 3–14. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Jähne, P.: Overview of the current state of research on parallelisation of evolutionary algorithms on graphic cards. In: GI-Jahrestagung, INFORMATIK 2016, LNI, Bonn, Germany, pp. 2163–2174, September 2016Google Scholar
  12. 12.
    Luong, T., Melab, N., Talbi, E.G.: GPU-based island model for evolutionary algorithms. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 1089–1096. ACM, Portland, July 2010Google Scholar
  13. 13.
    Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA architecture. In: Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12239-2_46 CrossRefGoogle Scholar
  14. 14.
    Wong, M., Cui, G.: Data mining using parallel multi-objective evolutionary algorithms on graphics processing units. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp. 287–307. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Sharma, D., Collet, P.: Implementation techniques for massively parallel multi-objective optimization. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. Natural Computing Series, pp. 267–286. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Asensio-Cubero, J., Gan, J., Palaniappan, R.: Multiresolution analysis over simple graphs for brain computer interfaces. J. Neural Eng. 10(4), 046014 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan José Escobar
    • 1
  • Julio Ortega
    • 1
    Email author
  • Antonio Francisco Díaz
    • 1
  • Jesús González
    • 1
  • Miguel Damas
    • 1
  1. 1.Department of Computer Architecture and Technology, CITICUniversity of GranadaGranadaSpain

Personalised recommendations