First Experiences Accelerating Smith-Waterman on Intel’s Knights Landing Processor

  • Enzo Rucci
  • Carlos Garcia
  • Guillermo Botella
  • Armando De Giusti
  • Marcelo Naiouf
  • Manuel Prieto-Matias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10393)


The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments. However, SW is very computationally demanding for large protein databases. There are several implementations that take advantage of parallel capacities on many-cores, FPGAs or GPUs, in order to increase the alignment throughtput. In this paper, we have explored SW acceleration on Intel KNL processor. The novelty of this architecture requires the revision of previous programming and optimization techniques on many-core architectures. To the best of authors knowledge, this is the first KNL architecture assessment for SW algorithm. Our evaluation, using the renowned Environmental NR database as benchmark, has shown that multi-threading and SIMD exploitation showed competitive performance (351 GCUPS) in comparison with other implementations.


Bioinformatics Smith-Waterman Xeon-Phi Intel-KNL SIMD 



This work has been partially supported by Spanish government through research contract TIN2015-65277-R and CAPAP-H6 network (TIN2016-81840-REDT).


  1. 1.
    Asai, R.: MCDRAM as high-bandidth memory (HBM) in knights landing processors: developer’s guide (2016).
  2. 2.
    Daily, J.: Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. BMC Bioinform. 17, 81 (2016)CrossRefGoogle Scholar
  3. 3.
    Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–708 (1981)CrossRefGoogle Scholar
  4. 4.
    Isa, M., Benkrid, K., Clayton, T., Ling, C., Erdogan, A.: An FPGA-based parameterised and scalable optimal solutions for pairwise biological sequence analysis. In: 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 344–351, June 2011Google Scholar
  5. 5.
    Lan, H., Liu, W., Schmidt, B., Wang, B.: Accelerating large-scale biological database search on xeon phi-based neo-heterogeneous architectures. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 503–510, November 2015Google Scholar
  6. 6.
    Li, T.I., Shum, W., Truong, K.: 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA). BMC Bioinform. 8, I85 (2007)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14, 117 (2013)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Schmidt, B.: Swaphi: Smith-waterman protein database search on xeon phi coprocessors. In: 25th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP 2014) (2014)Google Scholar
  9. 9.
    Mount, D.W.: Bioinformatics: Sequence and Genome Analysis. Mount Bioinformatics. Cold Spring Harbor Laboratory Press, New York (2004)Google Scholar
  10. 10.
    Reinders, J., Jeffers, J., Sodani, A.: Intel Xeon Phi Processor High Performance Programming Knights, Landing edn. Morgan Kaufmann Publishers Inc., Boston (2016)Google Scholar
  11. 11.
    Rognes, T.: Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation. BMC Bioinform. 12(1), 221 (2011). CrossRefGoogle Scholar
  12. 12.
    Rognes, T., Seeberg, E.: Six-fold speed-up of Smith-Waterman sequence database searches using parallel processing on common microprocessors. Bioinformatics 16(8), 699 (2000). CrossRefGoogle Scholar
  13. 13.
    Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matas, M.: An energy-aware performance analysis of SWIMM: Smith Waterman implementation on Intel’s Multicore and Manycore architectures. Concurr. Comput. Pract. Exp. 27(18), 5517–5537 (2015). CrossRefGoogle Scholar
  14. 14.
    Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matas, M.: OSWALD: OpenCL Smith-Waterman algorithm on altera FPGA for large protein databases. Int. J. High Perform. Comput. Appl. (2016).
  15. 15.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)CrossRefGoogle Scholar
  16. 16.
    Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation intel xeon phi product. IEEE Micro 36(2), 34–46 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Enzo Rucci
    • 1
  • Carlos Garcia
    • 2
  • Guillermo Botella
    • 2
  • Armando De Giusti
    • 1
  • Marcelo Naiouf
    • 3
  • Manuel Prieto-Matias
    • 2
  1. 1.III-LIDI, CONICET, Facultad de InformáticaUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Depto. Arquitectura de Computadores y AutomáticaUniversidad Complutense de MadridMadridSpain
  3. 3.III-LIDI, Facultad de InformáticaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations