Advertisement

Split Chern–Simons Theory in the BV-BFV Formalism

  • Alberto S. CattaneoEmail author
  • Pavel Mnev
  • Konstantin Wernli
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

The goal of this note is to give a brief overview of the BV-BFV formalism developed by the first two authors and Reshetikhin in (Cattaneo et al., Commun Math Phys 332(2), 535–603, 2014) [9], (Cattaneo et al., Perturbative Quantum Gauge Theories on Manifolds with Boundary, 2015) [10] in order to perform perturbative quantisation of Lagrangian field theories on manifolds with boundary, and present a special case of Chern–Simons theory as a new example.

Notes

Acknowledgements

A.S.C. and K.W. acknowledge partial support of SNF Grants No. 200020-149150/1 and PDFMP2_137103. This research was (partly) supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation, and by the COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology). P. M. acknowledges partial support of RFBR Grant No. 13-01-12405-ofi-m.

References

  1. 1.
    M. Atiyah, Topological quantum field theories. Publications mathématiques de l‘IHÉS, 68 (1), 175–186 (1988). ISSN 1618-1913Google Scholar
  2. 2.
    I.A. Batalin, G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28(10), 2567–2582 (1983). ISSN 0556-2821Google Scholar
  3. 3.
    I.A. Batalin, E.S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983). ISSN 0370-2693Google Scholar
  4. 4.
    I.A. Batalin, G.A. Vilkovisky, Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Beisert, Quantum Field Theory II, Lecture Notes, 2014, Retrieved from http://edu.itp.phys.ethz.ch/fs13/qft2/
  6. 6.
    S. Cappell, D. DeTurck, H. Gluck, E.Y. Miller, Cohomology of Harmonic Forms on Riemannian Manifolds with Boundary (2007)Google Scholar
  7. 7.
    A.S. Cattaneo, G. Felder, A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A.S. Cattaneo, P. Mnev, Remarks on Chern-Simons invariants. Commun. Math. Phys. 293, 803–836 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    A.S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A.S. Cattaneo, P. Mnev, N. Reshetikhin. Perturbative Quantum Gauge Theories on Manifolds with Boundary (2015)Google Scholar
  11. 11.
    P. Clavier, V.D. Nguyen, Batalin-Vilkovisky formalism as a theory of integration for polyvectors, in Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, ed. by A. Cardona, P. Morales, H. Ocampo, A. Reyes Lega, S. Paycha (Springer, Berlin, 2017)Google Scholar
  12. 12.
    D. Fiorenza, An Introduction to the Batalin-Vilkovisky Formalism (2003)Google Scholar
  13. 13.
    M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1994)Google Scholar
  14. 14.
    R. Kirby, P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2, c). Invent Math. 105(1), 473–545 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    P. Mnev, Discrete BF Theory (2008)Google Scholar
  16. 16.
    P. Mnev, Lecture Notes on Torsions (2014)Google Scholar
  17. 17.
    T. Ohtsuki, Quantum Invariants: A Study of Knots, 3-manifolds, and Their Sets. K & E Series on Knots and Everything (World Scientific, Singapore, 2002)Google Scholar
  18. 18.
    E.M. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995)Google Scholar
  19. 19.
    M. Polyak, Feynman diagrams for pedestrians and mathematicians. Proc. Symp. Pure Math. 73, 15–42 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    N. Reshetikhin, Lectures on quantization of gauge systems, in Proceedings of the Summer School "New paths towards quantum gravity", Holbaek, Denmark, Lecture Notes in Physics, vol. 807, ed. by B. Booss-Bavnbek, B. D’Esposito, M. Lesch (Springer, Berlin, 2010), pp. 3–58Google Scholar
  21. 21.
    N. Reshetikhin, V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(1), 547–597 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    A. Schwarz, Topological Quantum Field Theories (2007)Google Scholar
  23. 23.
    A.S. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants. Lett. Math. Phys. 2(3), 247–252 (1978)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    F. Schätz, Invariance of the bfv complex. Pacific J. Math. 248(2), 453–474 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    G.B. Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics (Como, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 250 (Kluwer Acad. Publ., Dordrecht, 1988), pp. 165–171Google Scholar
  26. 26.
    D. Tong, Lectures on Quantum Field Theory (2006), Retrieved from http://www.damtp.cam.ac.uk/user/tong/qft.html
  27. 27.
    V.G. Turaev, Quantum Invariants of Knots and 3-manifolds (De Gruyter Studies in Mathematics, New York, 2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alberto S. Cattaneo
    • 1
    Email author
  • Pavel Mnev
    • 2
    • 3
  • Konstantin Wernli
    • 1
  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland
  2. 2.Max-Planck-Institut für MathematikBonnGermany
  3. 3.St. Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations