Advertisement

Estimating Energy Consumption in Evolutionary Algorithms by Means of FRBS

Towards Energy-Aware Bioinspired Algorithms
  • Josefa Díaz Álvarez
  • Francisco Chávez de La OEmail author
  • Juan Ángel García Martínez
  • Pedro Ángel Castillo Valdivieso
  • Francisco Fernández de Vega
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10423)

Abstract

During the last decades, energy consumption has become a topic of interest for algorithm designers, particularly when devoted to networked devices and mainly when handheld ones are involved. Moreover energy consumption has become a matter of paramount importance in nowadays environmentally conscious society. Although a number of studies are already available, not many have focused on Evolutionary Algorithms (EAs). Moreover, no previous attempt has been performed for modeling energy consumption behavior of EAs considering different hardware platforms. This paper thus aims at not only analyzing the influence of the main EA parameters in their energy related behavior, but also tries for the first time to develop a model that allows researchers to know how the algorithm will behave in a number of hardware devices. We focus on a specific member of the EA family, namely Genetic Programming (GP), and consider several devices when employed as the underlying hardware platform. We apply a Fuzzy Rules Based System to build the model that allows then to predict energy required to find a solution, given a previously chosen hardware device and a set of parameters for the algorithm.

Keywords

Green computing Energy-aware computing Performance measurements Evolutionary algorithms 

Notes

Acknowledgements

We acknowledge support from Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (FEDER) under project EphemeCH (TIN2014-56494-C4-{1,2,3}-P), and Junta de Extremadura FEDER, project GR15068.

References

  1. 1.
    de Vega, F.F., Pérez, J.I.H., Lanchares, J.: Parallel Architectures and Bioinspired Algorithms, vol. 122. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Cotta, C., Fernández-Leiva, A., de Vega, F.F., Chávez, F., Merelo, J., Castillo, P., Bello, G., Camacho, D.: Ephemeral computing and bioinspired optimization - challenges and opportunities. In: 7th International Joint Conference on Evolutionary Computation Theory and Applications, Lisboa, Portugal, pp. 319–324. Scitepress (2015)Google Scholar
  3. 3.
    Albers, S.: Algorithms for dynamic speed scaling. In: Schwentick, T., Dürr, C. (eds.) 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in Informatics (LIPIcs), vol. 9, pp. 1–11. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2011)Google Scholar
  4. 4.
    Kumar, G., Shannigrahi, S.: New online algorithm for dynamic speed scaling with sleep state. Theor. Comput. Sci. 593, 79–87 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Huang, P., Kumar, P., Giannopoulou, G., Thiele, L.: Energy efficient DVFS scheduling for mixed-criticality systems. In: 2014 International Conference on Embedded Software (EMSOFT), pp. 1–10, October 2014Google Scholar
  6. 6.
    Chen, Z., Mi, C.C., Xiong, R., Xu, J., You, C.: Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming. J. Power Sources 248, 416–426 (2014)CrossRefGoogle Scholar
  7. 7.
    Yu, W., Li, B., Jia, H., Zhang, M., Wang, D.: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy Build. 88, 135–143 (2015)CrossRefGoogle Scholar
  8. 8.
    Álvarez, J.D., Risco-Martín, J.L., Colmenar, J.M.: Multi-objective optimization of energy consumption and execution time in a single level cache memory for embedded systems. J. Syst. Softw. 111, 200–212 (2016)CrossRefGoogle Scholar
  9. 9.
    de Vega, F.F., Chávez, F., Díaz, J., García, J.A., Castillo, P.A., Merelo, J.J., Cotta, C.: A cross-platform assessment of energy consumption in evolutionary algorithms. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 548–557. Springer, Cham (2016). doi: 10.1007/978-3-319-45823-6_51 CrossRefGoogle Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gacto, M., Galende, M., Alcalá, R., Herrera, F.: METSK-HDe: a multiobjective evolutionary algorithm to learn accurate tsk-fuzzy systems in high-dimensional and large-scale regression problems. Inf. Sci. 276, 63–79 (2014)CrossRefGoogle Scholar
  13. 13.
    Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)CrossRefzbMATHGoogle Scholar
  15. 15.
    Nesmachnow, S., Luna, F., Alba, E.: An empirical time analysis of evolutionary algorithms as C programs. Softw. Pract. Exp. 45(1), 111–142 (2015)CrossRefGoogle Scholar
  16. 16.
    Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. C–26(12), 1182–1191 (1977)CrossRefzbMATHGoogle Scholar
  17. 17.
    Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)CrossRefzbMATHGoogle Scholar
  18. 18.
    Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intel. 1(1), 27–46 (2008)CrossRefGoogle Scholar
  19. 19.
    García-Valdez, M., Trujillo, L., Merelo, J.J., de Vega, F.F., Olague, G.: The evospace model for pool-based evolutionary algorithms. J. Grid Comput. 13(3), 329–349 (2015)CrossRefGoogle Scholar
  20. 20.
    Balasubramaniam, J.: Conditions for inference invariant rule reduction in frbs by combining rules with identical consequents. Acta Polytech. Hung. 3(4), 113–143 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Josefa Díaz Álvarez
    • 1
  • Francisco Chávez de La O
    • 1
    Email author
  • Juan Ángel García Martínez
    • 1
  • Pedro Ángel Castillo Valdivieso
    • 2
  • Francisco Fernández de Vega
    • 1
  1. 1.Universidad de ExtremaduraBadajozSpain
  2. 2.ETSI Informática, Universidad de GranadaGranadaSpain

Personalised recommendations