Advertisement

Multiclassifier System Using Class and Interclass Competence of Base Classifiers Applied to the Recognition of Grasping Movements in the Control of Bioprosthetic Hand

  • Marek KurzynskiEmail author
  • Pawel Trajdos
  • Andrzej Wolczowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10423)

Abstract

In this paper the problem of recognition of patient’s intent to move hand prosthesis is addressed. The proposed method is based on recognition of electromyographic (EMG) and mechanomyographic (MMG) biosignals using a multiclassifier (MC) system working with dynamic ensemble selection scheme and original concept of competence measure. The concept focuses on developing competence and interclass cross- competence measures which can be applied as a method for classifiers combination. The cross-competence measure allows an ensemble to harness information obtained from incompetent classifiers instead of removing them from the ensemble. The performance of MC system with proposed competence measure was experimentally compared against six state-of-the-art classification methods using real data concerning the recognition of six types of grasping movements. The system developed achieved the highest classification accuracies demonstrating the potential of MC system for the control of bioprosthetic hand.

Keywords

Bioprosthesis EMG signal MMG signal Multiclassifier system Competence measure 

Notes

Acknowledgment

This work was supported by the statutory funds of the Dept. of Systems and Computer Networks, Wroclaw Univ. of Technology.

References

  1. 1.
    Berger, J.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985). doi: 10.1007/978-1-4757-4286-2 CrossRefzbMATHGoogle Scholar
  2. 2.
    Britto, A., Sabourin, R., Oliveira, R.: Dynamic selection of classifiers a comprehensive review. Pattern Recogn. 47, 3665–3680 (2014)CrossRefGoogle Scholar
  3. 3.
    Carrozza, M., Cappiello, G., et al.: Design of a cybernetic hand for perception and action. Biol. Cybern. 95, 626–644 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    De Luca, C.: Electromyography. In: Webster, J.G. (ed.) Encyclopedia of Medical Devices and Instrumentation, pp. 98–109. Wiley, Hoboken (2006)Google Scholar
  5. 5.
    Demsar, J.: Statistical comparison of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Devroye, L.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996). doi: 10.1007/978-1-4612-0711-5 CrossRefzbMATHGoogle Scholar
  7. 7.
    Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)CrossRefGoogle Scholar
  8. 8.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley, New York (2000)zbMATHGoogle Scholar
  9. 9.
    Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50, 848–854 (2003)CrossRefGoogle Scholar
  10. 10.
    Kakoty, M., Hazarika, S.: Towards electromyogram-based grasps classification. Int. J. Biomech. Biomed. Robot. 3(2), 63–73 (2014)Google Scholar
  11. 11.
    Khushaba, R.: Application of biosignal-driven intelligent systems for multifunction prosthesis control. Ph.D. thesis, Faculty of Engineering and Information Technology, University of Technology, Sydney (2010)Google Scholar
  12. 12.
    Ko, A., Sabourin, N., Britto, A.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recogn. 41, 1718–1731 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kurzynski, M.: On a two-level multiclassifier system with error correction applied to the control of bioprosthetic hand. In: Proceedings of the 14th World Congress of Medical Informatics MEDINFO, p. 210 (2013)Google Scholar
  15. 15.
    Kurzynski, M., Wolczowski, A.: Multiclassifier system with fuzzy inference method applied to the recognition of biosignals in the control of bioprosthetic hand. In: Zeng, Z., Li, Y., King, I. (eds.) ISNN 2014. LNCS, vol. 8866, pp. 469–478. Springer, Cham (2014). doi: 10.1007/978-3-319-12436-0_52 Google Scholar
  16. 16.
    Kurzynski, M., Krysmann, M., et al.: Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand. Comput. Biol. Med. 69, 286–297 (2016)CrossRefGoogle Scholar
  17. 17.
    Mamoni, D.: On cardinality of fuzzy sets. Int. J. Intell. Syst. Appl. 5, 47–52 (2013)zbMATHGoogle Scholar
  18. 18.
    Micera, C., Carpantero, J., Raspopovic, S.: Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010)CrossRefGoogle Scholar
  19. 19.
    Oskoei, M., Hu, H.: Support vector machine-based classification scheme for EMG control applied to upper limb. IEEE Trans. Biomed. Eng. 55, 1956–1965 (2008)CrossRefGoogle Scholar
  20. 20.
    Peerdeman, B., Boere, D., et al.: Myoelectric forearm prostheses: state of the art from a user-centered perspective. J. Rehabil. Res. Dev. 48, 719–738 (2011)CrossRefGoogle Scholar
  21. 21.
    Ravindra, K., Ildstad, S.: Immunosuppressive protocols and immunological challenges related to hand transplantation. Hand Clin. 27(4), 467–79 (2011)CrossRefGoogle Scholar
  22. 22.
    Schloegl, A.: A comparison of multivariate autoregressive estimators. Sig. Process. 9, 2426–2429 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Trajdos, P., Kurzynski, M.: A dynamic model of classifier competence based on the local fuzzy confusion matrix and the random reference classifier. Int. J. Appl. Math. Comput. Sci. 26, 17–28 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wolczowski, A., Kurzynski, M.: Human - machine interface in bio-prosthesis control using EMG signal classification. Expert Syst. 27, 53–70 (2010)CrossRefGoogle Scholar
  25. 25.
    Woloszynski, T., Kurzynski, M.: On a new measure of classifier competence applied to the design of multiclassifier systems. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 995–1004. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04146-4_106 CrossRefGoogle Scholar
  26. 26.
    Woloszynski, T., Kurzynski, M.: A probabilistic model of classifier competence for dynamic ensemble selection. Pattern Recogn. 44, 2656–2668 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Woloszynski, T., Kurzynski, M., et al.: A measure of competence based on random classification for dynamic ensemble selection. Inf. Fusion 13, 207–213 (2012)CrossRefzbMATHGoogle Scholar
  28. 28.
  29. 29.
    Wolpert, D.: Stacked generalization. Neural Netw. 5, 214–259 (1992)CrossRefGoogle Scholar
  30. 30.
    Woods, K., Kegelmeyer, W., Bowyer, K.: Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 19, 405–410 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marek Kurzynski
    • 1
    Email author
  • Pawel Trajdos
    • 1
  • Andrzej Wolczowski
    • 1
  1. 1.Department of Systems and Computer NetworksWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations