Drift Parameter Estimation in the Models Involving Fractional Brownian Motion

  • Yuliya Mishura
  • Kostiantyn RalchenkoEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 208)


This paper is a survey of existing estimation techniques for an unknown drift parameter in stochastic differential equations driven by fractional Brownian motion. We study the cases of continuous and discrete observations of the solution. Special attention is given to the fractional Ornstein–Uhlenbeck model. Mixed models involving both standard and fractional Brownian motion are also considered.


Fractional Brownian motion Stochastic differential equation Drift parameter estimation Fractional Ornstein-Uhlenbeck process 


  1. 1.
    Azmoodeh, E., Morlanes, J.I.: Drift parameter estimation for fractional Ornstein–Uhlenbeck process of the second kind. Statistics 49(1), 1–18 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Azmoodeh, E., Viitasaari, L.: Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind. Stat. Inference Stoch. Process. 18(3), 205–227 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bel Hadj Khlifa, M., Mishura, Y., Zili, M.: Asymptotic properties of non-standard drift parameter estimators in the models involving fractional Brownian motion. Theory Probab. Math. Stat. 94, 73–84 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Belfadli, R., Es-Sebaiy, K., Ouknine, Y.: Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case. Front. Sci. Eng. 1(1), 1–16 (2011)Google Scholar
  5. 5.
    Bercu, B., Gamboa, F., Rouault, A.: Large deviations for quadratic forms of stationary Gaussian processes. Stoch. Process. Appl. 71(1), 75–90 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bercu, B., Coutin, L., Savy, N.: Sharp large deviations for the fractional Ornstein–Uhlenbeck process. Theory Probab. Appl. 55(4), 575–610 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bercu, B., Proïa, F., Savy, N.: On Ornstein–Uhlenbeck driven by Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 85, 36–44 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bertin, K., Torres, S., Tudor, C.A.: Drift parameter estimation in fractional diffusions driven by perturbed random walks. Stat. Probab. Lett. 81(2), 243–249 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Berzin, C., León, J.R.: Estimation in models driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 44(2), 191–213 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bishwal, J.P.N.: Parameter Estimation in Stochastic Differential Equations. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Bishwal, J.P.N.: Minimum contrast estimation in fractional Ornstein–Uhlenbeck process: continuous and discrete sampling. Fract. Calc. Appl. Anal. 14, 375–410 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Brouste, A., Kleptsyna, M.: Asymptotic properties of MLE for partially observed fractional diffusion system. Stat. Inference Stoch. Process. 13(1), 1–13 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Brouste, A., Iacus, S.M.: Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package. Comput. Stat. 28(4), 1529–1547 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Brouste, A., Kleptsyna, M., Popier, A.: Design for estimation of the drift parameter in fractional diffusion systems. Stat. Inference Stoch. Process. 15(2), 133–149 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cai, C., Chigansky, P., Kleptsyna, M.: Mixed Gaussian processes: a filtering approach. Ann. Probab. 44(4), 3032–3075 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chigansky, P., Kleptsyna, M.: Statistical analysis of the mixed fractional Ornstein–Uhlenbeck process. arXiv:1507.04194 (2016)
  18. 18.
    Clarke De la Cerda, J., Tudor, C.A.: Least squares estimator for the parameter of the fractional Ornstein–Uhlenbeck sheet. J. Korean Stat. Soc. 41(3), 341–350 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Diedhiou, A., Manga, C., Mendy, I.: Parametric estimation for SDEs with additive sub-fractional Brownian motion. J. Numer. Math. Stoch. 3(1), 37–45 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dozzi, M., Mishura, Y., Shevchenko, G.: Asymptotic behavior of mixed power variations and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18(2), 151–175 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Dozzi, M., Kozachenko, Y., Mishura, Y., Ralchenko, K.: Asymptotic growth of trajectories of multifractional Brownian motion, with statistical applications to drift parameter estimation. Stat. Inference Stoch. Process. (2016).
  22. 22.
    El Machkouri, M., Es-Sebaiy, K., Ouknine, Y.: Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes. J. Korean Stat. Soc. 45, 329–341 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    El Onsy, B., Es-Sebaiy, K., Viens, F.: Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noises. arXiv:1501.04972 (2015)
  24. 24.
    Es-Sebaiy, K., Ndiaye, D.: On drift estimation for non-ergodic fractional Ornstein–Uhlenbeck process with discrete observations. Afr. Stat. 9(1), 615–625 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Es-Sebaiy, K., Viens, F.: Optimal rates for parameter estimation of stationary Gaussian processes. arXiv:1603.04542 (2016)
  26. 26.
    Gamboa, F., Rouault, A., Zani, M.: A functional large deviations principle for quadratic forms of Gaussian stationary processes. Stat. Probab. Lett. 43(3), 299–308 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Guerra, J., Nualart, D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal. Appl. 26(5), 1053–1075 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Heyde, C.C.: Quasi-Likelihood and Its Application. A General Approach to Optimal Parameter Estimation. Springer, New York (1997)zbMATHCrossRefGoogle Scholar
  29. 29.
    Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hu, Y., Song, J.: Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations. Malliavin Calculus and Stochastic Analysis. A Festschrift in Honor of David Nualart, pp. 427–442. Springer, New York (2013)CrossRefGoogle Scholar
  31. 31.
    Hu, Y., Nualart, D., Song, X.: A singular stochastic differential equation driven by fractional Brownian motion. Statist. Probab. Lett. 78(14), 2075–2085 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hu, Y., Nualart, D., Xiao, W., Zhang, W.: Exact maximum likelihood estimator for drift fractional Brownian motion at discrete observation. Acta Math. Sci. Ser. B Engl. Ed. 31(5), 1851–1859 (2011)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Iacus, S.M.: Simulation and Inference for Stochastic Differential Equations. With R Examples. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  34. 34.
    Jost, C.: Transformation formulas for fractional Brownian motion. Stoch. Process. Appl. 116(10), 1341–1357 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Kessler, M., Lindner, A., Sørensen, M. (eds.): Statistical methods for stochastic differential equations. In: Selected Papers Based on the Presentations at the 7th séminaire Européen de statistiques on Statistics for Stochastic Differential Equations Models, La Manga del Mar Menor, Cartagena, Spain, 7–12 May 2007. CRC Press, Boca Raton (2012)Google Scholar
  36. 36.
    Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein–Uhlenbeck type process. Statist. Inference Stoch. Process. 5, 229–248 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Kolmogoroff, A.N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Doklady) Acad. Sci. URSS (N.S.) 26, 115–118 (1940)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Kozachenko, Y., Melnikov, A., Mishura, Y.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Kubilius, K.: The existence and uniqueness of the solution of an integral equation driven by a \(p\)-semimartingale of special type. Stoch. Process. Appl. 98(2), 289–315 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Kubilius, K., Melichov, D.: Quadratic variations and estimation of the Hurst index of the solution of SDE driven by a fractional Brownian motion. Lith. Math. J. 50(4), 401–417 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Kubilius, K., Mishura, Y.: The rate of convergence of Hurst index estimate for the stochastic differential equation. Stoch. Process. Appl. 122(11), 3718–3739 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Kubilius, K., Mishura, Y., Ralchenko, K., Seleznjev, O.: Consistency of the drift parameter estimator for the discretized fractional Ornstein–Uhlenbeck process with Hurst index \(H\in (0,\frac{1}{2})\). Electron. J. Stat. 9(2), 1799–1825 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Kukush, A., Mishura, Y., Ralchenko, K.: Hypothesis testing of the drift parameter sign for fractional Ornstein–Uhlenbeck process. arXiv:1604.02645 [math.PR] (2016)
  44. 44.
    Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)zbMATHCrossRefGoogle Scholar
  45. 45.
    Le Breton, A.: Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion. Stat. Probab. Lett. 38(3), 263–274 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Liptser, R., Shiryayev, A.: Statistics of Random Processes II. Applications. Springer, New York (1978)zbMATHCrossRefGoogle Scholar
  47. 47.
    Lyons, T.J.: Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14(2), 215–310 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Marushkevych, D.: Large deviations for drift parameter estimator of mixed fractional Ornstein–Uhlenbeck process. Mod. Stoch. Theory Appl. 3(2), 107–117 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Mendy, I.: Parametric estimation for sub-fractional Ornstein–Uhlenbeck process. J. Stat. Plan. Inference 143(4), 663–674 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes, vol. 1929. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  52. 52.
    Mishura, Y.: Maximum likelihood drift estimation for the mixing of two fractional Brownian motions. Stochastic and Infinite Dimensional Analysis, pp. 263–280. Springer, Berlin (2016)CrossRefGoogle Scholar
  53. 53.
    Mishura, Y., Shevchenko, G.: Mixed stochastic differential equations with long-range dependence: existence, uniqueness and convergence of solutions. Comput. Math. Appl. 64(10), 3217–3227 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Mishura, Y., Ralchenko, K.: On drift parameter estimation in models with fractional Brownian motion by discrete observations. Austrian J. Stat. 43(3), 218–228 (2014)CrossRefGoogle Scholar
  55. 55.
    Mishura, Y., Voronov, I.: Construction of maximum likelihood estimator in the mixed fractional-fractional Brownian motion model with double long-range dependence. Mod. Stoch. Theory Appl. 2(2), 147–164 (2015)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Mishura, Y., Ralchenko, K., Seleznev, O., Shevchenko, G.: Asymptotic properties of drift parameter estimator based on discrete observations of stochastic differential equation driven by fractional Brownian motion. Modern Stochastics and Applications. Springer Optimization and Its Applications, vol. 90, pp. 303–318. Springer, Cham (2014)CrossRefGoogle Scholar
  57. 57.
    Mishura, Y.S., Il’chenko, S.A.: Stochastic integrals and stochastic differential equations with respect to the fractional Brownian field. Theory Probab. Math. Stat. 75, 93–108 (2007)CrossRefGoogle Scholar
  58. 58.
    Mishura, Y.S., Shevchenko, G.M.: Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index \(H > 1/2\). Commun. Stat. Theory Methods 40(19–20), 3492–3508 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Moers, M.: Hypothesis testing in a fractional Ornstein–Uhlenbeck model. Int. J. Stoch. Anal. Art. ID 268568, 23 pp. (2012)Google Scholar
  60. 60.
    Neuenkirch, A., Tindel, S.: A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise. Stat. Inference Stoch. Process. 17(1), 99–120 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series, vol. 4. Springer, Bocconi University Press, Milan (2012)zbMATHCrossRefGoogle Scholar
  63. 63.
    Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Process. Appl. 102(1), 103–116 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Nualart, D., Răşcanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53(1), 55–81 (2002)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Nualart, D., Ouknine, Y.: Stochastic differential equations with additive fractional noise and locally unbounded drift. Stochastic Inequalities and Applications. Progress in Probability, vol. 56, pp. 353–365. Birkhäuser, Basel (2003)CrossRefGoogle Scholar
  66. 66.
    Prakasa Rao, B.: Asymptotic Theory of Statistical Inference. Wiley, New York (1987)zbMATHGoogle Scholar
  67. 67.
    Prakasa Rao, B.L.S.: Statistical Inference for Fractional Diffusion Processes. Wiley, Chichester (2010)zbMATHGoogle Scholar
  68. 68.
    Ralchenko, K.V.: Approximation of multifractional Brownian motion by absolutely continuous processes. Theory Probab. Math. Stat. 82, 115–127 (2011)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Translate from the Russian. Gordon and Breach, New York (1993)zbMATHGoogle Scholar
  70. 70.
    Sørensen, H.: Parametric inference for diffusion processes observed at discrete points in time: a survey. Int. Stat. Rev. 72(3), 337–354 (2004)CrossRefGoogle Scholar
  71. 71.
    Sottinen, T., Tudor, C.A.: Parameter estimation for stochastic equations with additive fractional Brownian sheet. Stat. Inference Stoch. Process. 11(3), 221–236 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Tanaka, K.: Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 16, 173–192 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Tanaka, K.: Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 18(3), 315–332 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Tudor, C.A., Viens, F.G.: Statistical aspects of the fractional stochastic calculus. Ann. Stat. 35(3), 1183–1212 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Xiao, W., Zhang, W., Xu, W.: Parameter estimation for fractional Ornstein–Uhlenbeck processes at discrete observation. Appl. Math. Model. 35, 4196–4207 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Zähle, M.: On the link between fractional and stochastic calculus. Stochastic Dynamics (Bremen 1997), pp. 305–325. Springer, New York (1999)CrossRefGoogle Scholar
  78. 78.
    Zähle, M.: Integration with respect to fractal functions and stochastic calculus. II. Math. Nachr. 225, 145–183 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Zhang, P., Xiao, W., Zhang, X., Niu, P.: Parameter identification for fractional Ornstein–Uhlenbeck processes based on discrete observation. Econ. Model. 36, 198–203 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations