Multi-directional Characterization for Pollen Tubes Based on a Nanorobotic Manipulation System

  • Wenfeng Wan
  • Yang Liu
  • Haojian Lu
  • Yajing Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10462)


Pollen tubes’ main function is to transport gametes to ovules. Mechanical properties of pollen tubes affect their growth and penetration. Most existing systems for characterizing pollen tubes can only characterize pollen tubes from one direction. However, considering pollen tubes’ nonuniform properties, results got from one fixed direction don’t necessarily represent pollen tubes’ overall properties. In order to characterize pollen tubes from multi-direction instead of one direction, a nanorobotic system is proposed herein. The system contains two robots, robot 1 for sample assembly and robot 2 for sensor assembly. Robot 1’s rotation degree enables pollen tubes to be characterized from multi-direction. During experiments, the pollen tube is bent at different angles from 0° to 360°. Bending forces at different angle are quite different. The results demonstrate that pollen tubes are inhomogeneous along circumferential direction and justify the necessity to characterize pollen tubes from multi-direction. Experiment results can be used to measure pollen tubes’ stiffness at different direction and analyze how pollen tubes penetrate through pistil.


Pollen tubes Bend Nanorobotic system Mechanical characterization Multi-direction Nonuniform properties 



This work is practically supported by Shenzhen Basic Research Project (JCYJ20160329150236426), and GRF of Hong Kong (CityU 21201314).


  1. 1.
    Bruckman, D., Campbell, D.R.: Timing of invasive pollen deposition influences pollen tube growth and seed set in a native plant. Biol. Invasions 18(6), 1701–1711 (2016)CrossRefGoogle Scholar
  2. 2.
    Higashiyama, T., Takeuchi, H.: The mechanism and key molecules involved in pollen tube guidance. Annu. Rev. Plant Biol. 66, 393–413 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhou, L., Lan, W., Chen, B., Fang, W., Luan, S.: A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. Plant Physiol. 167(4), 1351–1360 (2015)CrossRefGoogle Scholar
  4. 4.
    Agudelo, C., Packirisamy, M., Geitmann, A.: Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Scientific reports 6 (2016)Google Scholar
  5. 5.
    Shamsudhin, N., et al.: Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLoS ONE 11(12), e0168138 (2016)CrossRefGoogle Scholar
  6. 6.
    Felekis, D., et al.: Real-time automated characterization of 3D morphology and mechanics of developing plant cells. Int. J. Robot. Res. 34(8), 1136–1146 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, L., Hukin, D., Pritchard, J., Thomas, C.: Comparison of plant cell turgor pressure measurement by pressure probe and micromanipulation. Biotech. Lett. 28(15), 1147–1150 (2006)CrossRefGoogle Scholar
  8. 8.
    Tomos, A.D., Leigh, R.A.: The pressure probe: a versatile tool in plant cell physiology. Annu. Rev. Plant Biol. 50(1), 447–472 (1999)CrossRefGoogle Scholar
  9. 9.
    Felekis, D., Muntwyler, S., Vogler, H., Beyeler, F., Grossniklaus, U., Nelson, B.J.: Quantifying growth mechanics of living, growing plant cells in situ using microbotics. IET Micro Nano Lett. 6(5), 311–316 (2011)CrossRefGoogle Scholar
  10. 10.
    Shamsudhin, N., et al.: Probing the micromechanics of the fastest growing plant cell_the pollen tube. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 461–464 (2016)Google Scholar
  11. 11.
    Nezhad, A.S.: Microfluidic platforms for plant cells studies. Lab Chip 14(17), 3262–3274 (2014)CrossRefGoogle Scholar
  12. 12.
    Horade, M., Kanaoka, M.M., Kuzuya, M., Higashiyama, T., Kaji, N.: A microfluidic device for quantitative analysis of chemo attraction in plants. Rsc Adv. 3(44), 22301–22307 (2013)CrossRefGoogle Scholar
  13. 13.
    Nezhad, A.S., Naghavi, M., Packirisamy, M., Bhat, R., Geitmann, A.: Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC). Lab Chip 13(13), 2599–2608 (2013)CrossRefGoogle Scholar
  14. 14.
    Agudelo, C.G., Sanati Nezhad, A., Ghanbari, M., Naghavi, M., Packirisamy, M., Geitmann, A.: TipChip: a modular, MEMS‐based platform for experimentation and phenotyping of tip‐growing cells. Plant J. 73(6), 1057–1068 (2013)Google Scholar
  15. 15.
    Zhou, C., et al.: A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes. IEEE/ASME Trans. Mechatron. 21(3), 1233–1241 (2016)CrossRefGoogle Scholar
  16. 16.
    Zimmermann, S., Tiemerding, T., Fatikow, S.: Automated robotic manipulation of individual colloidal particles using vision-based control. IEEE/ASME Trans. Mechatron. 20(5), 2031–2038 (2015)CrossRefGoogle Scholar
  17. 17.
    Yajing, S., Masahiro, N., Zhan, Y., Seiji, K., Michio, H., Toshio, F.: Design and characterization of nanoknife with buffering beam for in situ single-cell cutting. Nanotechnology 22(30), 305701 (2011)CrossRefGoogle Scholar
  18. 18.
    Shen, Y., Wan, W., Lu, H., Fukuda, T., Shang, W.: Automatic sample alignment under microscopy for 360° imaging based on the nanorobotic manipulation system. IEEE Trans. Robot. 33(1), 220–226 (2016)Google Scholar
  19. 19.
    Shen, Y., Wan, W., Zhang, L., Yong, L., Lu, H., Ding, W.: Multidirectional image sensing for microscopy based on a rotatable robot. Sensors 15(12), 31566–31580 (2015)CrossRefGoogle Scholar
  20. 20.
    Wan, W., Lu, H., Zhukova, V., Ipatov, M., Zhukov, A., Shen, Y.: Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM. AIP Adv. 6(9), 095309 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wenfeng Wan
    • 1
  • Yang Liu
    • 1
  • Haojian Lu
    • 1
  • Yajing Shen
    • 1
    • 2
  1. 1.City University of Hong KongKowloonHong Kong SAR
  2. 2.City University of Hong Kong Shenzhen Research InstituteShenzhenChina

Personalised recommendations