Rehabilitation Training for Leg Based on EEG-EMG Fusion

  • Heng TangEmail author
  • Gongfa Li
  • Ying Sun
  • Guozhang Jiang
  • Jianyi Kong
  • Zhaojie Ju
  • Du Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10462)


Stroke is a kind of cerebral vascular disease with high death rate and high disability rate, most stroke patients lose a lot of physiological function. For example, motor function, language function, etc. Two data acquisition methods of lower limb rehabilitation system for patients with stroke were introduced in this paper that is EEG signal extraction based on BCI and lower limb muscle electrical stimulation system based on EMG model. Through the wavelet packet transform (WPT) to analyze the EEG signal and collect the effective EEG signal. The wavelet transform is used to analyze the time and frequency domain, which provides a good feature vector for the dynamic analysis and motion recognition of EMG signals.


EEG signal EMG signal Feature extraction Pattern recognition Electrical stimulation system 



This work was supported by grants of National Natural Science Foundation of China (Grant Nos. 51575407, 51575338, 51575412) and the UK Engineering and Physical Science Research Council (Grant No. EP/G041377/1).


  1. 1.
    Naghavi, M., Wang, H., et al.: Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 385(9963), 71–117 (2015)Google Scholar
  2. 2.
    Luo, Y., Xu, C.-Y.: Effect of rehabilitation training and rehabilitation after discharge on the rehabilitation of cerebral infarction. Chin. J. Gen. Pract. 9(10), 1646–1647 (2011)Google Scholar
  3. 3.
    Tesio, L.: Outcome measurement in behavioural sciences: a view on how to shift attention from means to individuals and why. Int. J. Rehabil. Res. 35(1), 1–12 (2012)CrossRefGoogle Scholar
  4. 4.
    Beldalois, J.M., Horno, S.M., Bermejobosch, I., et al.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroengineering Rehabil. 8(1), 1–20 (2011)CrossRefGoogle Scholar
  5. 5.
    Chu, Y., Zhao, X., Han, J., et al.: SSVEP based brain-computer interface controlled functional electrical stimulation system for upper extremity rehabilitation. In: IEEE International Conference on Robotics and Biomimetics, pp. 2244–2249 (2014)Google Scholar
  6. 6.
    Do, A.H., Wang, P.T., King, C.E., et al.: Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6414–6417 (2012)Google Scholar
  7. 7.
    Takahashi, M., Takeda, K., Otaka, Y., et al.: Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: A feasibility study. J. Neuroengineering Rehabil. 9(1), 56–61 (2012)CrossRefGoogle Scholar
  8. 8.
    Rajan, B., Lokesh, J., Kiron, V., et al.: Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Vet. Res. 9(1), 1–11 (2013)CrossRefGoogle Scholar
  9. 9.
    Xu, F., Zhou, W., Zhen, Y., et al.: Classification of motor imagery tasks for electrocorticogram based brain-computer interface. Biomed. Eng. Lett. 4(2), 149–157 (2014)CrossRefGoogle Scholar
  10. 10.
    Nawrocka, A., Holewa, K.: Brain - computer interface based on steady - state visual evoked potentials. In: Carpathian Control Conference, pp. 251–254. IEEE (2013)Google Scholar
  11. 11.
    Aloise, F., Schettini, F., Aricò, P., et al.: Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users. Clin. EEG Neurosci. 42(4), 219–224 (2011)CrossRefGoogle Scholar
  12. 12.
    Northoff, G.: Slow cortical potentials and “inner time consciousness” A neuro-phenomenal hypothesis about the “width of present”. Int. J. Psychophysiol. 103, 174–184 (2015)CrossRefGoogle Scholar
  13. 13.
    Jamal, W., Das, S., Maharatna, K., et al.: Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks. Physica A 434, 273–295 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Atyabi, A., Shic, F., Naples, A.: Mixture of autoregressive modeling orders and its implication on single trial EEG classification. Expert Syst. Appl. 65, 164–180 (2016)CrossRefGoogle Scholar
  15. 15.
    Lekshmi, S.S., Selvam, V., Pallikonda Rajasekaran, M.: EEG signal classification using principal component analysis and wavelet transform with neural network. In: International Conference on Communications and Signal Processing, pp. 687–690 (2014)Google Scholar
  16. 16.
    Wang, D., Miao, D., Xie, C.: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38(11), 14314–14320 (2011)Google Scholar
  17. 17.
    Duvinage, M., Castermans, T., Petieau, M., et al.: A subjective assessment of a P300 BCI system for lower-limb rehabilitation purposes. In: Engineering in Medicine and Biology Society, pp. 3845–3849 (2012)Google Scholar
  18. 18.
    Diez, P.F., Müller, S.M.T., Mut, V.A., et al.: Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain–computer interface. Med. Eng. Phys. 35(8), 1155–1164 (2013)CrossRefGoogle Scholar
  19. 19.
    Maclean, M.H., Arnell, K.M.: Greater attentional blink magnitude is associated with higher levels of anticipatory attention as measured by alpha event-related desynchronization. Brain Res. 1387(2), 99–107 (2011)CrossRefGoogle Scholar
  20. 20.
    Kang, S.K., Choi, H.H., Chang, S.M., et al.: Comparison of k -nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011)CrossRefGoogle Scholar
  21. 21.
    Sutarman, M.M.A., Zain, J.M.: A review on the development of Indonesian sign language recognition system. J. Comput. Sci. 9(11), 1496–1505 (2013)CrossRefGoogle Scholar
  22. 22.
    Jeong, E.C., Kim, S.J., Song, Y.R., et al.: Comparison of wrist motion classification methods using surface electromyogram. J. Cent. S. Univ. 20(4), 960–968 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, T., Liu, T., Li, F., et al.: Structural and functional correlates of motor imagery BCI performance: insights from the patterns of fronto-parietal attention network. Neuroimage 134, 475–485 (2016)CrossRefGoogle Scholar
  24. 24.
    Yu, J.H., Sim, K.B.: Classification of color imagination using Emotiv EPOC and event-related potential in electroencephalogram. Opt. Int. J. Light Electron. Opt. 127(20), 9711–9718 (2016)CrossRefGoogle Scholar
  25. 25.
    Roy, R., Mahadevappa, M., Kumar, C.S.: Trajectory path planning of EEG controlled robotic arm using GA. Procedia Comput. Sci. 84, 147–151 (2016)CrossRefGoogle Scholar
  26. 26.
    Das, A.K., Suresh, S., Sundararajan, N.: A discriminative subject-specific spatio-spectral filter selection approach for EEG based motor-imagery task classification. Expert Syst. Appl. 64, 375–384 (2016)CrossRefGoogle Scholar
  27. 27.
    Ang, C.S., Sakel, M., Pepper, M., et al.: Use of brain computer interfaces in neurological rehabilitation. Br. J. Nurs. 7(3), 523–528 (2011)Google Scholar
  28. 28.
    Xu, B., Song, A., Wang, A.: EEG feature extraction method based on wavelet packet energy. J. SE Univ. (Nat. Sci. Ed.) 40(6), 1203–1206 (2011)Google Scholar
  29. 29.
    Wang, Jianhui, Zhang, Chuanxin, Bai, Bing, et al.: Upper limb rehabilitation robot experimental platform for sEMG acquisition system’s design. Electron. World 11, 28–30 (2012)Google Scholar
  30. 30.
    Zhang, Q., Xi, X., Luo, Z.: A pattern recognition method for surface electromyography based on nonlinear features. J. Electron. Inf. Technol. 35(9), 2054–2058 (2013)CrossRefGoogle Scholar
  31. 31.
    Zhang, T., Wang, X.Q., Jiang, L., et al.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic applications. Robotica 1(10), 1–18 (2015)Google Scholar
  32. 32.
    Reddy, N.P., Gupta, V.: Toward direct biocontrol using surface EMG signals: control of finger and wrist joint models. Med. Eng. Phys. 29(3), 398–403 (2007)CrossRefGoogle Scholar
  33. 33.
    Hou, W., Xu, R., Zheng, X., et al.: Relationship between handgrip forces and surface electromyogram activities of forearm muscle. Space Med. Med. Eng. 20(4), 264–268 (2007)Google Scholar
  34. 34.
    Luo, Z., Wang, R.: Study of myoelectric bionic artificial hand with tactile sense. Chin. J. Sens. Actuat. 18(1), 23–27 (2005)Google Scholar
  35. 35.
    Cheng, B., Liu, G.: Emotion recognition based on wavelet packet entropy of surface EMG signal. Comput. Eng. Appl. 44(26), 214–216 (2008)Google Scholar
  36. 36.
    Luo, Z., Yang, G.: Surface electromyography analytical method based on the parameter of AR model. Chin. J. Sens. Actuat. 16(4), 384–387 (2003)Google Scholar
  37. 37.
    Li, Y., Mao, L.: Neuromuscular electrical promoting role in the treatment of general instrument in median nerve injury. Med. J. Thepresent Clin. 29(5), 2537 (2016)Google Scholar
  38. 38.
    Yang, B., Tian, R., Lianguo, C., et al.: Meta-analysis of transcranial magnetic stimulation to treat post-stroke dysfunction. Neural Regeneration Res. 6(22), 1736–1741 (2011)Google Scholar
  39. 39.
    Liu, Dinghua, Liu, Dongbo, Hong, Shanshan, et al.: The effects of low frequency electrical stimulation on connectivity changes in the brain and motor function after ischemic stroke. Chin. J. Phys. Med. Rehabil. 34(11), 821–824 (2012)Google Scholar
  40. 40.
    Veer, K., Sharma, T.: A novel feature extraction for robust EMG pattern recognition. J. Med. Eng. Technol. 40(4), 149–154 (2016)CrossRefGoogle Scholar
  41. 41.
    Meng, F., Tong, K.Y., Chan, S.T., et al.: Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Trans. Neural Syst. Rehabil. Eng. 17(3), 234–243 (2009)CrossRefGoogle Scholar
  42. 42.
    Bayram, M.B., Siemionow, V., Yue, G.H.: Weakening of corticomuscular signal coupling during voluntary motor action in aging. J. Gerontol. 70(8), 1037–1043 (2015)CrossRefGoogle Scholar
  43. 43.
    Pavlidou, A., Schnitzler, A., Lange, J.: Beta oscillations and their functional role in movement perception. Transl. Neurosci. 5(4), 286–292 (2014)CrossRefGoogle Scholar
  44. 44.
    Seeber, M., Scherer, R., Wagner, J., et al.: EEG beta suppression and low gamma modulation are different elements of human upright walking. Front. Hum. Neurosci. 8(485), 485–486 (2014)Google Scholar
  45. 45.
    Kamp, D., Krause, V., Butz, M., et al.: Changes of cortico-muscular coherence: an early marker of healthy aging? AGE 35(1), 49–58 (2013)CrossRefGoogle Scholar
  46. 46.
    Scafetta, N., Mazzarella, A.: Spectral coherence between climate oscillations and the M ≥ 7 earthquake historical worldwide record. Nat. Hazards 76(3), 1807–1829 (2015)CrossRefGoogle Scholar
  47. 47.
    Ma, Peipei, Chen, Yingya, Yihao, Du, et al.: Analysis of corticomuscual coherence during rehabilitation exercises after stroke. J. Biomed. Eng. 5, 971–977 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Heng Tang
    • 1
    Email author
  • Gongfa Li
    • 1
    • 2
  • Ying Sun
    • 1
    • 2
  • Guozhang Jiang
    • 1
    • 2
  • Jianyi Kong
    • 1
    • 2
  • Zhaojie Ju
    • 3
  • Du Jiang
    • 1
  1. 1.Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Mechanical Transmission and Manufacturing EngineeringWuhan University of Science and TechnologyWuhanChina
  3. 3.The Laboratory of Intelligent System and Biomedical RoboticsUniversity of PortsmouthPortsmouthUK

Personalised recommendations