Advertisement

Ontology-Based Data Access with Datalog+/−

  • Gerardo I. Simari
  • Cristian Molinaro
  • Maria Vanina Martinez
  • Thomas Lukasiewicz
  • Livia Predoiu
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Ontologies are logical theories that describe a formal conceptualization in a domain of interest. Conceptualizations are intensional semantic structures that codify implicit knowledge that restricts the structure of a part of the domain. Usually, this specification is expressed explicitly in a (declarative) language. This formalization makes the knowledge available for machine processing, facilitating in this way its interchange. For this reason, in the last years, ontologies have been of increasing interest in many and diverse applications, especially in the context of artificial intelligence (AI), the Semantic Web, and data integration.

References

  1. 1.
    D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M. Franklin, J. Gehrke, L. Haas, A. Halevy, J. Han, H.V. Jagadish, A. Labrinidis, S. Madden, Y. Papakonstantinou, J.M. Patel, R. Ramakrishnan, K. Ross, C. Shahabi, D. Suciu, S. Vaithyanathan, J. Widom, Challenges and opportunities with Big Data. A community white paper developed by leading researchers across the United States vol. 5 (2012), pp. 34–43Google Scholar
  2. 2.
    A. Atserias, A. Dawar, P.G. Kolaitis, On preservation under homomorphisms and unions of conjunctive queries. J. ACM 53(2), 208–237 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.), The Description Logic Handbook: Theory, Implementation, and Applications (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  4. 4.
    F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic (Cambridge University Press, Cambridge, 2017)CrossRefzbMATHGoogle Scholar
  5. 5.
    J. Baget, M. Mugnier, Extensions of simple conceptual graphs: the complexity of rules and constraints. J. Artif. Intell. Res. 16, 425–465 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    J. Baget, M. Leclaire, M. Mugnier, E. Salvat, On rules with existential variables: walking the decidability line. Artif. Intell. J. 175(9), 1620–1654 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Baget, M. Mugnier, S. Rudolph, M. Thomazo, Walking the complexity lines for generalized guarded existential rules, in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2011), pp. 712–717Google Scholar
  8. 8.
    J. Baget, M. Mugnier, M. Thomazo, Towards farsighted dependencies for existential rules, in Proceedings of the Web Reasoning and Rule Systems Conference (RR) (2011), pp. 30–45Google Scholar
  9. 9.
    C. Beeri, M.Y. Vardi, The implication problem for data dependencies, in International Colloquium on Automata, Languages and Programming (ICALP), vol. 115 (1981), pp. 73–85Google Scholar
  10. 10.
    T. Berners-Lee, J. Hendler, O. Lassila, The semantic web. Sci. Am. 284(5), 34–43 (2001)CrossRefGoogle Scholar
  11. 11.
    A. Calì, G. Gottlob, M. Kifer, Taming the infinite chase: query answering under expressive relational constraints, in Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR) (2008), pp. 70–80Google Scholar
  12. 12.
    A. Calì, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering over ontologies, in Proceedings of the ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS) (2009), pp. 77–86Google Scholar
  13. 13.
    A. Calì, G. Gottlob, A. Pieris, Advanced processing for ontological queries. Proc. VLDB Endow. 3(1), 554–565 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Calì, G. Gottlob, A. Pieris, Query answering under non-guarded rules in Datalog+/−, in Proceedings of the Web Reasoning and Rule Systems Conference (RR) (2010), pp. 1–17Google Scholar
  15. 15.
    A. Calì, G. Gottlob, A. Pieris, Towards more expressive ontology languages: the query answering problem. Artif. Intell. 193, 87–128 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Calì, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering over ontologies. J.Web Semant. 14, 57–83 (2012)Google Scholar
  17. 17.
    A. Calì, G. Gottlob, M. Kifer, Taming the infinite chase: query answering under expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    A.K. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries in relational data bases, in Proceedings of the ACM Symposium on Theory of Computing (STOC) (1977), pp. 77–90Google Scholar
  19. 19.
    A.K. Chandra, H. Lewis, J. Makowsky, Embedded implicational dependencies and their inference problem, in Proceedings of the ACM Symposium on Theory of Computing (STOC) (1981), pp. 342–354Google Scholar
  20. 20.
    E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  21. 21.
    R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: semantics and query answering, in Proceedings of the International Conference on Database Theory (ICDT) (2003), pp. 207–224Google Scholar
  22. 22.
    R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa, Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    G. Gottlob, G. Orsi, A. Pieris, M. Šimkus, Datalog and its extensions for semantic Web databases, in Reasoning Web International Summer School (2012), pp. 54–77Google Scholar
  24. 24.
    G. Gottlob, M. Manna, A. Pieris, Combining decidability paradigms for existential rules. Theory Pract. Log. Program. 13(4–5), 877–892 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    B.C. Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik, Z. Wang, Acyclicity notions for existential rules and their application to query answering in ontologies. J. Artif. Intell. Res. 47, 741–808 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    D. Johnson, A. Klug, Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    M. Krötzsch, S. Rudolph, Extending decidable existential rules by joining acyclicity and guardedness, in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2011), pp. 963–968Google Scholar
  28. 28.
    M. Krötzsch, S. Rudolph, Revisiting acyclicity and guardedness criteria for decidability of existential rules. Technical Report 3011, Institute AIFB, Karlsruhe Institute of Technology (2011)Google Scholar
  29. 29.
    N. Leone, M. Manna, G. Terracina, P. Veltri, Efficiently computable Datalog programs, in Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR) (2012), pp. 13–23Google Scholar
  30. 30.
    T. Lukasiewicz, M.V. Martinez, A. Pieris, G.I. Simari, From classical to consistent query answering under existential rules, in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2015), pp. 1546–1552Google Scholar
  31. 31.
    B. Marnette, Generalized schema-mappings: from termination to tractability, in Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS) (2009), pp. 13–22Google Scholar
  32. 32.
    M. Milani, L. Bertossi, Tractable query answering and optimization for extensions of weakly-sticky Datalog+/−. arXiv:1504.03386 (2015)Google Scholar
  33. 33.
    M. Minsky, A framework for representing knowledge. Technical report, Cambridge, MA (1974)Google Scholar
  34. 34.
    M.R. Quillian, Word concepts: a theory and simulation of some basic semantic capabilities. Behav. Sci. 12, 410–430 (1967)CrossRefGoogle Scholar
  35. 35.
    F. Spezzano, S. Greco, Chase termination: a constraints rewriting approach. Proc. VLDB Endow. 3(1), 93–104 (2010)Google Scholar
  36. 36.
    O. Tifrea-Marciuska, Personalised search for the social semantic web. D.Phil. Thesis, Department of Computer Science, University of Oxford (2016)Google Scholar
  37. 37.
    M.Y. Vardi, The complexity of relational query languages (extended abstract), in Proceedings of the ACM Symposium on Theory of Computing (STOC) (1982), pp. 137–146Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gerardo I. Simari
    • 1
  • Cristian Molinaro
    • 2
  • Maria Vanina Martinez
    • 1
  • Thomas Lukasiewicz
    • 3
  • Livia Predoiu
    • 3
  1. 1.Consejo Nacional de Investigaciones Cientificas y TecnicasUniversidad Nacional del SurBahia BlancaArgentina
  2. 2.DIMES DepartmentUniversità della CalabriaRendeItaly
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations