Impact Cratering

  • Thomas KenkmannEmail author
  • Gerwin Wulf
Part of the Springer Praxis Books book series (PRAXIS)


The evolution of the solar system is intimately related to its collision history that ultimately led to the formation of planets, satellites and minor bodies. Later on impact cratering processes shaped planetary surfaces and delivered the building blocks for the evolution of life on earth via comets and carbonaceous chondrites. After the short period of late heavy bombardment at 3.9 Ga, collision rates remained relatively constant until present due to a steady-state equilibrium between impactor formation in the asteroid belt and consumption of this population by collisions. This chapter sheds light on the physical processes that occur during a hypervelocity impact from the initial contact to the final modifications of a crater structure. Different crater morphologies are presented and influencing factors such as the target composition and the effects of oblique impacts are considered.

Suggested Readings

  1. Barlow, N., Boyce, J., Costard, F., Craddock, R., Garvin, J., Sakimoto, S., Kuzmin, R., Roddy, D. Soderblom, L.: Standardizing the nomenclature of Martian impact crater ejecta morphologies. J. Geophys. Res. 105(E11), 26733–26738 (2000). doi:10.1029/2000JE001258CrossRefGoogle Scholar
  2. Bottke, W., Jedicke, R., Morbidelli, A., Petit, J.-M., Gladman, B.: Understanding the distribution of near-earth asteroids. Science 288(5474), 2190–2194 (2000). doi:10.1126/science.288.5474.2190CrossRefGoogle Scholar
  3. Collins, G., Melosh, H. Osinski, G.: The impact cratering process. Elements 8, 25–30 (2013). doi:10.2113/gselements.8.1.25CrossRefGoogle Scholar
  4. French, B. (ed.): Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution 954, p. 120. Lunar and Planetary Institute, Houston (1998)Google Scholar
  5. French, B., Koeberl, C.: The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci. Rev. 98(1–2), 123–170 (2010). doi:10.1016/j.earscirev.2009.10.009CrossRefGoogle Scholar
  6. Holsapple, K.A.: The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993). doi: 10.1146/annurev.ea.21.050193.002001CrossRefGoogle Scholar
  7. Kenkmann, T., Poelchau, M. Wulf, G.: Structural geology of impact craters. J. Struct. Geol. 62, 156–182 (2014). doi:10.1016/j.jsg.2014.01.015CrossRefGoogle Scholar
  8. Melosh, H. (ed.): Impact Cratering: A Geological Process, p. 289. Oxford University Press, New York (1989)Google Scholar
  9. Neukum, G., Ivanov, B. Hartmann, W.: Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96(1), 55–86 (2001). doi:10.1023/A:1011989004263CrossRefGoogle Scholar
  10. Osinski, G., Pierazzo, E. (eds.): Impact Cratering. Processes and Products, p. 316. Wiley-Blackwell, Hoboken (2012). doi:10.1002/9781118447307Google Scholar
  11. Schenk, P.M.: Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes. Nature 417, 419–421 (2000). doi:10.1038/417419aCrossRefGoogle Scholar
  12. Schubert, G. (ed.): Treatise on Geophysics, 2nd edn., p. 5604. Elsevier, Oxford (2015)Google Scholar
  13. Stöffler, D., Langenhorst, F.: Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics 29(2), 155–181 (1994). doi:10.1111/j.1945-5100.1994.tb00670.xGoogle Scholar
  14. Werner, S.C., Ivanov, B.A.: 10 – Exogenic dynamics, cratering, and surface ages. In: Schubert et al. (eds.), 10 – Physics of Terrestrial Planets and Moons, pp. 327–365. Elsevier, Amsterdam (2015). doi:10.1016/B978-0-444-53802-4.00170-6Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of FreiburgFreiburgGermany

Personalised recommendations