The Terrestrial Planets

  • Angelo Pio Rossi
  • Stephan van Gasselt
  • Harald Hiesinger
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

For the structure of this chapter we chose to discuss the terrestrial planets and their satellites in terms of their geological evolution with time. We start with ancient times and end with modern times. Orthogonal to this time line, we describe the processes and their effects acting on each planetary body. Our home planet, Earth, serves as a reference framework and important anchor point for our comparative planetology studies because it is the best studied object for which we have knowledge gained from hundreds of years of sample analyses, mapping efforts, drilling, mining, and remote sensing, to name only a few sources of information. Comparing the entire suite of terrestrial planets requires to individually characterize each of them and the processes acting on them through time. However, there are several limitations involved in such a reconstruction, partially due to the discontinuous and fragmentary nature of the accessible geologic records and the lack of enough well-contextualised field data.

Further Readings

  1. Arvidson, R.: Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice. J. Geophys. Res. Planets. 121(9), 1602–1626 (2016). doi:10.1002/2016JE005079.CrossRefGoogle Scholar
  2. Balme, M., Gallagher, C., Hauber, E.: Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data. Prog. Phys. Geogr. 37(3), 289–324 (2013). doi:10.1177/0309133313477123.CrossRefGoogle Scholar
  3. Basilevsky, A.T., Head, J.W.: The geologic history of Venus: a stratigraphic view. J. Geophys. Res. Planets 103(E4), 8531–8544 (1998). doi:10.1029/98JE00487CrossRefGoogle Scholar
  4. Carr, M.H.: Channels and valleys on Mars: cold climate features formed as a result of a thickening cryosphere. Planet. Space Sci. 44(11), 1411–1423 (1996). doi:10.1016/S0032– 0633(96)00053-0Google Scholar
  5. Carr, M.H., Head, J.W.: Geologic history of Mars. Earth Planet. Sci. Lett. 294(3), 185–203 (2010). doi:10.1016/j.epsl.2009.06.042CrossRefGoogle Scholar
  6. Carr, M.H., Head, J.: Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42(3), 726–732 (2015). doi:10.1002/2014GL062464CrossRefGoogle Scholar
  7. Ehlmann, B.L., Edwards, C.S.: Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42(1), 291–315 (2014). doi:10.1146/annurev-earth-060313-055024CrossRefGoogle Scholar
  8. Elkins-Tanton, L.T.: Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40(1), 113–139 (2012). doi:10.1146/annurev-earth-042711-105503CrossRefGoogle Scholar
  9. Farley, K.A., et al.: In situ radiometric and exposure age dating of the martian surface. Science 343(6169), 1247166 (2014). doi:10.1126/science.1247166CrossRefGoogle Scholar
  10. Geiss, J., Rossi, A.P.: On the chronology of lunar origin and evolution. Astron. Astrophys. Rev. 21(1), 1–54 (2013). doi:10.1007/s00159-013-0068-1CrossRefGoogle Scholar
  11. Gregg, T.: (2015). Planetary tectonics and volcanism: the inner solar system. In: Schubert, G. (ed.) Physics of Terrestrial Planets and Moons. Treatise on Geophysics, vol. 10, Chap. 9, pp. 307–325, 2nd edn. Elsevier, Oxford (2015). doi:10.1016/B978-0-444-53802-4.00187-1Google Scholar
  12. Grotzinger, J., Hayes, A., Lamb, M., McLennan, S.: (2013). Sedimentary processes on Earth, Mars, Titan, and Venus. Comp. Climatol. Terr. Planets 1, 439–472 (2013)Google Scholar
  13. Hansen, V.L.: Impact origin of Archean cratons. Lithosphere 7(5), 563–578 (2015). doi:10.1130/L371.1CrossRefGoogle Scholar
  14. Hansen, V.L., Young, D.: Venus’s evolution: a synthesis. Geol. Soc. Am. Spec. Pap. 419, 255–273 (2007). doi:10.1130/2006.2419(13)Google Scholar
  15. Hartmann, W.K.: The giant impact hypothesis: past, present (and future?). Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 372(2024) (2014)Google Scholar
  16. Helbert, J., Hauber, E., Reiss, D.: Water on the terrestrial planets. In: Schubert, G. (ed.) Physics of Terrestrial Planets and Moons. Treatise on Geophysics, vol. 10, Chap. 11, pp. 367–409, 2nd edn. Elsevier, Oxford (2015). doi:10.1016/B978–0-444-53802-4.00174-3Google Scholar
  17. Hiesinger, H., Head, J.W.: New views of lunar geoscience: an introduction and overview. Rev. Mineral. Geochem. 60(1), 1–81 (2006). doi:10.2138/rmg.2006.60.1CrossRefGoogle Scholar
  18. Lasue, J., Mangold, N., Hauber, E., Clifford, S., Feldman, W., Gasnault, O., Grima, C., Maurice, S., Mousis, O.: Quantitative assessments of the martian hydrosphere. Space Sci. Rev. 174(1), 155–212 (2013). doi:10.1007/s11214-012-9946-5CrossRefGoogle Scholar
  19. McLennan, S.M., et al.: Geochemistry of sedimentary processes on Mars. Sediment. Geol. Mars 102, 119–138 (2012)Google Scholar
  20. Reiss, D., Lorenz, R., Balme, M., Neakrase, L., Rossi, A.P., Spiga, A., Zarnecki, J. (eds.) Dust Devils. Space Sciences Series of ISSI, vol. 59, 426 pp. Springer (2017). ISBN: 978-94-024-1133-1, ISSN: 1385-7525Google Scholar
  21. Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G., Drossart, P.: Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328(5978), 605–608 (2010). doi:10.1126/science.1186785CrossRefGoogle Scholar
  22. Steffen, W., Leinfelder, R., Zalasiewicz, J., Waters, C.N., Williams, M., Summerhayes, C., Barnosky, A.D., Cearreta, A., Crutzen, P., Edgeworth, M., Ellis, E.C., Fairchild, I.J., Galuszka, A., Grinevald, J., Haywood, A., Ivar do Sul, J., Jeandel, C., McNeill, J., Odada, E., Oreskes, N., Revkin, A., Richter, D.D., Syvitski, J., Vidas, D., Wagreich, M., Wing, S.L., Wolfe, A.P., Schellnhuber, H.: Stratigraphic and Earth System approaches to defining the Anthropocene. Earth’s Futur. (2016). doi:10.1002/2016EF000379Google Scholar
  23. Taylor, S.R., McLennan, S.: Planetary Crusts: Their Composition, Origin and Evolution, vol. 10. Cambridge University Press, Cambridge (2009)Google Scholar
  24. Way, M.J., Del Genio, A.D., Kiang, N.Y., Sohl, L.E., Grinspoon, D.H., Aleinov, I., Kelley, M., Clune, T.: Was Venus the first habitable world of our solar system? Geophys. Res. Lett. (2016). doi:10.1002/2016GL069790Google Scholar
  25. Werner, S.C., Ody, A., Poulet, F.: The source crater of Martian Shergottite meteorites. Science 343(6177), 1343–1346 (2014). doi:10.1126/science.1247282CrossRefGoogle Scholar
  26. Wilhelms, D.E., John, F., Trask, N.J.: The geologic history of the Moon. USGS Professional Paper, vol. 1348. U.S. Geological Survey. http://ser.sese.asu.edu/GHM (1987)
  27. Wordsworth, R.D., Kerber, L., Pierrehumbert, R.T., Forget, F., Head, J.W.: Comparison of warm and wet and cold and icy scenarios for early Mars in a 3-D climate model. J. Geophys. Res. Planets 120(6), 1201–1219 (2015). doi:10.1002/2015JE004787CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Angelo Pio Rossi
    • 1
  • Stephan van Gasselt
    • 2
  • Harald Hiesinger
    • 3
  1. 1.Jacobs University BremenCampus Ring 129795 BremenGermany
  2. 2.National Chengchi UniversityNo. 64, Sec 2, ZhiNan Rd., Wenshan DistrictTaipei 11605Taiwan
  3. 3.Westfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 1048149 MünsterGermany

Personalised recommendations