Putting Intelligence in the Network Edge Through NFV and Cloud Computing: The SESAME Approach

  • Ioannis P. ChochliourosEmail author
  • Anastasia S. Spiliopoulou
  • Alexandros Kostopoulos
  • Maria Belesioti
  • Evangelos Sfakianakis
  • Philippos Georgantas
  • Eirini Vasilaki
  • Ioannis Neokosmidis
  • Theodoros Rokkas
  • Athanassios Dardamanis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 744)


The core challenges in the actual SESAME EU-funded project is to develop an ecosystem to sustain network infrastructure openness, built on the pillars of network functions virtualization (NFV), mobile-edge computing (MEC) capabilities and cognitive network management that will provide multi-tenancy and flexible cloud-network interaction with highly-predictable and flexible end-to-end performance characteristics. Based on this aspect, we discuss the potential benefits of including NFV and MEC in a modern mobile communications infrastructure, through Small Cells coordination and virtualization, also focused upon realistic 5G-oriented considerations. Within the proposed SESAME architecture, we also assess the various advantages coming from a more enhanced network operation and management of resources, as it appears with the incorporation of cognitive capabilities embracing knowledge and intelligence.


5G Edge cloud computing Mobile edge computing (MEC) Network functions virtualization (NFV) Small cell (SC) Self-X functions Virtual network function (VNF) 



This work has been performed in the scope of the SESAME European Research Project and has been supported by the Commission of the European Communities (5G-PPP/H2020, Grant Agreement No. 671596).


  1. 1.
    European Commission and 5G-PPP: 5G Vision: The 5G-PPP Infrastructure Private Public Partnership: The Next Generation of Communication Network and Services (2015).
  2. 2.
    Demestichas, P., Georgakopoulos, A., et al.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)CrossRefGoogle Scholar
  3. 3.
    Andrews, J.G., et al.: What Will 5G Be? IEEE JSAC Spec. Issue 5G Wirel. Commun. Syst. 32(6), 1065–1082 (2014)Google Scholar
  4. 4.
    Capdevielle, V., Feki, A., Temer, E.: Enhanced resource sharing strategies for LTE picocells with heterogeneous traffic loads. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC2011-Spring), pp. 1–5. IEEE (2011)Google Scholar
  5. 5.
    Commission of the European Communities: Communication on “A Digital Market Strategy for Europe” [COM(2015) 192 final, 06.05.2015].
  6. 6.
    Quek, T.Q.S., de la Roche, G., Güvenç, İ., Kountouris, M.: Small Cell Networks Deployment, PHY Techniques, and Resource Management. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  7. 7.
    Small Cell Forum (SFC): Small Cells. What’s the Big Idea? (SFC document 030.07.03).
  8. 8.
    Østerbø, O., Grøndalen, O.: Benefits of self-organizing networks (SON) for mobile operators. J. Comput. Netw. Commun. 2012(862527), 1–16 (2012)Google Scholar
  9. 9.
    Ramiro, J., Hamied, K.: Self-Organizing Networks. Self-planning, self-optimization and self-healing for GSM. UMTS and LTE. Wiley, Hoboken (2012)Google Scholar
  10. 10.
    5G-Public Private Partnership (5G-PPP): Advanced 5G Network Infrastructure for the Future Internet – “Creating a Smart Ubiquitous Network for the Future Internet” (2013)Google Scholar
  11. 11.
    European Telecommunications Standards Institute: Network Functions Virtualisation - Introductory White Paper (2012).
  12. 12.
    Mosharaf, N.M., Chowdhury, K., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5), 862–876 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    SESAME H2020 5G-PPP Project.
  14. 14.
    Nadeau, T.D., Gray, K.: Software Defined Networks, 1st edn. O’Reilly, Sebastopol (2013)Google Scholar
  15. 15.
    Haleplidis, E., Salim, J.H., Denazis, S., et al.: Towards a network abstraction model for SDN. J. Netw. Syst. Manag. 23(2), 309–327 (2015)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Manzalini, A., Minerva, R., Callegati, F., Cerroni, W., Campi, A.: Clouds of virtual machines in edge networks. IEEE Commun. Mag. 51(7), 63–70 (2013)CrossRefGoogle Scholar
  18. 18.
    Schubert, L., Jeffery, K.: Advances in Clouds – Research in Future Cloud Computing. European Commission (2012)Google Scholar
  19. 19.
    Loeffler, B: Cloud Computing: What is Infrastructure as a Service?
  20. 20.
    Chochliouros, I.P., et al.: Challenges for defining opportunities for growth in the 5G era: the SESAME conceptual model. In: Proceedings of the EuCNC-2016, pp. 1–5 (2016)Google Scholar
  21. 21.
    Small Cell Forum: Small Cells and 5G Evolution: A Topic brief. (Document 055.07.01).
  22. 22.
    Fajardo, J.O., Liberal, F., et al.: Introducing mobile edge computing capabilities through distributed 5G cloud enabled small cells. Mob. Netw. Appl. 21(4), 564–574 (2016)CrossRefGoogle Scholar
  23. 23.
    Costa, C.E., Goratti, L.: SESAME essential architecture features. In: Proceedings of the EuCNC-2016, pp. 1–5 (2016)Google Scholar
  24. 24.
    Erikksson, M.: Small cells as a service: rethinking the mobile operator business. Arctos Lab (2014).
  25. 25.
    Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)CrossRefGoogle Scholar
  26. 26.
    Giannoulakis, I., Khodashenas, P.S., et al.: Enabling technologies and benefits of multi-tenant multi-service 5G small cells. In Proceedings of the EuCNC-2016, pp. 1–5 (2016)Google Scholar
  27. 27.
    European Telecommunications Standards Institute: Network Functions Virtualization (NFV); Architectural Framework. (GS NFV 002 V1.1.1) (2013)Google Scholar
  28. 28.
    Krebs, R., Momm, C., Kounev, S.: Architectural concerns in multi-tenant SaaS applications. In: Proceedings of CLOSER 2012, pp. 1–6. SciTePress (2012)Google Scholar
  29. 29.
    Hoffmann, M., Staufer, M.: Network virtualization for future mobile networks: general architecture and applications. In: Proceedings of the ICC-2011, pp. 1–5. IEEE (2011)Google Scholar
  30. 30.
    Tso, F.P., et al.: Network and server resource management strategies for data centre infrastructures: a survey. Comput. Netw. 106, 209–225 (2016)CrossRefGoogle Scholar
  31. 31.
    Blanco, B., Fajardo, J.O., Liberal, F.: Design of cognitive cycles in 5G networks. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 697–708. Springer, Cham (2016). doi: 10.1007/978-3-319-44944-9_62 CrossRefGoogle Scholar
  32. 32.
    Son, I., Lee, D., Lee, J.-N., Chang, Y.B.: Market perception on cloud computing initiatives in organizations: an extended resource-based view. Inf. Manag. 51(6), 653–669 (2014)CrossRefGoogle Scholar
  33. 33.
    Chochliouros, Ioannis P., et al.: A model for an innovative 5G-Oriented architecture, based on small cells coordination for multi-tenancy and edge services. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 666–675. Springer, Cham (2016). doi: 10.1007/978-3-319-44944-9_59 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ioannis P. Chochliouros
    • 1
    Email author
  • Anastasia S. Spiliopoulou
    • 1
  • Alexandros Kostopoulos
    • 1
  • Maria Belesioti
    • 1
  • Evangelos Sfakianakis
    • 1
  • Philippos Georgantas
    • 1
  • Eirini Vasilaki
    • 1
  • Ioannis Neokosmidis
    • 2
  • Theodoros Rokkas
    • 2
  • Athanassios Dardamanis
    • 3
  1. 1.Hellenic Telecommunications Organization (OTE) S.A.Maroussi, AthensGreece
  2. 2.INCITES Consulting S.A.R.L.StrassenLuxembourg
  3. 3.SmartNet S.A.Agios Dimitrios, AtticaGreece

Personalised recommendations