Advertisement

The AUTOWARE Framework and Requirements for the Cognitive Digital Automation

  • Elias Molina
  • Oscar Lazaro
  • Miguel Sepulcre
  • Javier Gozalvez
  • Andrea Passarella
  • Theofanis P. Raptis
  • Aleš Ude
  • Bojan Nemec
  • Martijn Rooker
  • Franziska Kirstein
  • Eelke Mooij
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 506)

Abstract

The successful introduction of flexible, reconfigurable and self-adaptive manufacturing processes relies upon evolving traditional automation ISA-95 automation solutions to adopt innovative automation pyramids. These new approaches target the integration of data-intensive cloud and fog-based edge computing and communication digital manufacturing processes from the shop-floor to the factory to the cloud. The integration and operation of the required ICT, automation and robotic technologies and platforms is particularly challenging for manufacturing SMEs, which account for more than 80% of manufacturing companies in Europe. This paper presents an insight into the business and operational processes, which motivate the development of a digital cognitive automation framework for collaborative robotics and modular manufacturing systems particularly tailored to SME operations and needs; i.e. the AUTOWARE Operative System. To meet the requirements of both large and small firms this paper elaborates on the smart integration of well-established SME friendly digital frameworks such as the ROS supported robotic Reconcell framework, the FIWARE-enabled BEinCPPS Cyber Physical Production framework and the OpenFog compliant TAPPS hardware framework.

Keywords

Collaborative robotics Cyber-Physical systems Modular manufacturing systems Requirements engineering Smart factory 

Notes

Acknowledgments

This work has been funded by the European Commission through the FoF-RIA Project AUTOWARE: Wireless Autonomous, Reliable and Resilient Production Operation Architecture for Cognitive Manufacturing (No. 723909).

References

  1. 1.
    Muller, P., Devnani, S., Julius, J., Gagliardi, D., Marzocchi, C.: Annual Report on European SMEs 2015/2016. European Union (2016)Google Scholar
  2. 2.
    Lu, Y., Morris, K.C., Frechette, S.: Current standards landscape for smart manufacturing systems. National Institute of Standards and Technology, NISTIR (2016)Google Scholar
  3. 3.
    Advanced Manufacturing Office (AMO), U.S. Department of Energy. https://energy.gov/eere/amo/next-generation-manufacturing-processes
  4. 4.
    Zaeh, M.F., Beetz, M., Shea, K., Reinhart, G., Bender, K., Lau, C., Ostgathe, M., Vogl, W., Wiesbeck, M., Engelhard, M., Ertelt, C., Rühr, T., Friedrich, M.: “The Cognitive Factory”, in Changeable and Reconfigurable Manufacturing Systems, pp. 355–371. Springer, London (2009)CrossRefGoogle Scholar
  5. 5.
    Hedelind, M.: On reconfigurable robotic working cells — a case study. In: Mitsuishi, M., Ueda, K., Kimura, F. (eds.) Manufacturing Systems and Technologies for the New Frontier, pp. 323–328. Springer, London (2008). doi: 10.1007/978-1-84800-267-8_66 CrossRefGoogle Scholar
  6. 6.
    Chen, I.M.: Rapid response manufacturing through a rapidly reconfigurable robotic workcell. Robot. Comput. Integr. Manufact. 17(3), 199–213 (2001)CrossRefGoogle Scholar
  7. 7.
    Sepulcre, M., Gozalvez, J., Coll-Perales, B.: Multipath QoS-driven routing protocol for industrial wireless networks. J. Netw. Comput. Appl. 74, 121–132 (2016)CrossRefGoogle Scholar
  8. 8.
    Cena, G., Scanzio, S., Valenzano, A.: Seamless link-level redundancy to improve reliability of industrial WiFi networks. IEEE Trans. Industr. Inf. 12(2), 608–620 (2016)CrossRefGoogle Scholar
  9. 9.
    Holfeld, B., Wieruch, D., Wirth, T., Thiele, L., Ashraf, S.A., Huschke, J., Aktas, I., Ansari, J.: Wireless communication for factory automation: an opportunity for LTE and 5G systems. IEEE Commun. Mag. 54(6), 36–43 (2016)CrossRefGoogle Scholar
  10. 10.
    Yin, S., Ding, S.X., Xie, X.: A review on basic data-driven approaches for industrial process monitoring. IEEE Trans. Industr. Electron. 61(11), 6414–6428 (2014)Google Scholar
  11. 11.
    Hegazy, T., Hefeeda, M.: Industrial automation as a cloud service. IEEE Trans. Parallel Distrib. Syst. 26(10), 2750–2763 (2015)CrossRefGoogle Scholar
  12. 12.
    European Factories of the Future Research Association (EFFRA), Platforms for Connected Factories of the Future, Brussels, Belgium (2015)Google Scholar
  13. 13.
    Kagermann, H., Riemensperger, F., Hoke, D., Helbig, J., Stocksmeier, D., Wahlster, W., Schweer, D.: Smart Service Welt: Recommendations for the Strategic Initiative Web-based Services for Businesses. Acatech, Berlin (2014)Google Scholar
  14. 14.
    ETSI TR 102 889-2 V1.1.1, Electromagnetic compatibility and Radio spectrum Matters; System Reference Document; Short Range Devices; Part 2: Technical characteristics for SRD equipment for wireless industrial applications using technologies different from Ultra-Wide Ban (2011)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Elias Molina
    • 1
  • Oscar Lazaro
    • 1
  • Miguel Sepulcre
    • 2
  • Javier Gozalvez
    • 2
  • Andrea Passarella
    • 3
  • Theofanis P. Raptis
    • 3
  • Aleš Ude
    • 4
  • Bojan Nemec
    • 4
  • Martijn Rooker
    • 5
  • Franziska Kirstein
    • 6
  • Eelke Mooij
    • 7
  1. 1.Innovalia AssociationBilbaoSpain
  2. 2.Universidad Miguel Hernández de ElcheElcheSpain
  3. 3.Institute of Informatics and Telematics, National Research CouncilPisaItaly
  4. 4.Department of Automatics, Biocybernetics, and RoboticsJožef Stefan InstituteLjubljanaSlovenia
  5. 5.TTTech ComputertechnikViennaAustria
  6. 6.Blue Ocean RoboticsOdenseDenmark
  7. 7.PWR PackEdeNetherlands

Personalised recommendations