Advertisement

Electromagnetic Aspects of the Reflector Antenna

  • Jacob W. M. Baars
  • Hans J. Kärcher
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 447)

Abstract

The purpose of the reflector antenna is to concentrate the radiation from a desired direction as effectively as possible in the focal point while suppressing interfering signals from other directions. The electromagnetic (EM) analysis of the antenna provides the basis for the definition and specification of the geometrical layout. This in turn has a strong influence on the structural and mechanical design and realisation of the antenna. Therefore, we devote this chapter to a summary of the main aspects of the electromagnetic theory of the reflector antenna. In particular, we present quantitative information on the relation between EM parameters and the resulting requirements on the hardware realisation of the antenna. The electromagnetic characteristics of even the largest radio telescope reflector cannot be properly described by geometrical optics only, as is usual for optical telescopes. A wave-based EM diffraction analysis is required to derive the parameters of the antenna: in particular its beam shape with sidelobes, polarisation state, gain and beam efficiency.

Supplementary material

References

  1. Baars, J.W.M.: The measurement of large antennas with cosmic radio sources. IEEE Trans. Antennas Propag. 21, 461–474 (1973)ADSCrossRefGoogle Scholar
  2. Baars, J.W.M.: Technology of large radio telescopes for millimeter and submillimeter wavelengths. In: Button, K. (ed.) Infrared and Millimeter Waves, vol. 9, Ch. 5, pp. 241–281. Academic Press, New York (1983)Google Scholar
  3. Baars, J.W.M.: The Paraboloidal Reflector Antenna in Radio Astronomy and Communication. Springer, New York (2007)Google Scholar
  4. Baars, J.W.M.: History of flux density calibration in radio astronomy. URSI Radio Sci. Bull. 348, 47–66 (Mar 2014)Google Scholar
  5. Baars, J.W.M., Genzel, R., Pauliny-Toth, I.K.K., Witzel, A.: The absolute spectrum of Cas A: an accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977)ADSGoogle Scholar
  6. Bennett, J.C., Anderson, A.P., McInnes, P.A., Whiteaker, A.J.T.: Microwave holographic metrology of large reflector antennas. IEEE Trans. Antennas Propag. 24, 295–303 (1976)ADSCrossRefGoogle Scholar
  7. Born, M., Wolf, E.: Principles of Optics, 7th edn, Seidel Aberrations, Ch. 5, 236; Zernike Polynomials, Ch. 9, 523, Appendix VII, 905. Cambridge University Press (1999)Google Scholar
  8. Clarricoats, P.J.B., Poulton, G.T.: High-efficiency microwave reflector antennas—A review. Proc. IEEE. 65, 1470–1504 (1977)ADSCrossRefGoogle Scholar
  9. DeBoer, D.R., et al.: Australian SKA pathfinder: a high-dynamic range wide-field of view survey telescope. Proc. IEEE. 97, 1507–1521 (2009)ADSCrossRefGoogle Scholar
  10. Erickson, N.R., Grosslein, R.M., Erickson, R.B., Weinreb, S.: A cryogenic focal plane array for 85-115 GHz using MMIC preamplifiers. IEEE Trans. MTT. 47, 2212–2219 (1999)CrossRefGoogle Scholar
  11. Findlay, J.W.: Operating experience at the National Radio Astronomy Observatory. In: Large Steerable Radio Antennas. Annals of the New York Academy of Sciences, vol. 116, pp. 25–40 (1964)ADSCrossRefGoogle Scholar
  12. Galindo, V.: Design of dual-reflector antennas with arbitrary phase and amplitude distributions. IEEE Trans. Antennas Propag. 12, 403–408 (1964)ADSCrossRefGoogle Scholar
  13. Goldsmith, P.F. (ed.): Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications. IEEE Press, New York (1998)Google Scholar
  14. Greve, A.: Strehl number degradation by large-scale systematic surface deviations. Appl. Opt. 19, 2948–2951 (1980)ADSCrossRefGoogle Scholar
  15. Hall, P.J. (ed.): The Square Kilometre Array: an international engineering perspective. Exp. Astron. 17, 1–3 (2004, also in book by Springer, 2005)Google Scholar
  16. Imbriale, W.A.: Large Antennas of the Deep Space Network. Wiley, Hoboken, NJ (2003)CrossRefGoogle Scholar
  17. Ivashina, M., Bij de Vaate, J.G., Braun, R., Bregman, J.D.: Focal plane arrays for large reflector antennas: first results of a demonstration project. Proc. SPIE. 5489, 1127–1138 (2004)ADSCrossRefGoogle Scholar
  18. Ivashina, M.V., Kehn, M.N.M., Kildal P.S., Maaskant, R.: Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays. First European Conference on Antennas and Propagation, Nice, 1–6 (2006)Google Scholar
  19. Jeffs, B.D., Warnick, K.F., Landon, J., Waldron, J., Jones, D., Fisher, J.R., Norrod, R.: Signal processing for phased array feeds in radio astronomical telescopes. IEEE J. Sel. Top. Sign. Process. 2, 635–646 (2008)ADSCrossRefGoogle Scholar
  20. Jennison, R.C.: Introduction to Radio Astronomy. Newnes, London (1966)Google Scholar
  21. Kramer, C., Peñalver, J, Greve, A.: Improvement of the IRAM 30 m Telescope Beam Pattern. IRAM Internal Memo (2013)Google Scholar
  22. Kuz’min, A.D., Salomonovivh, A.E.: Radioastronomical Methods of Antenna Measurements. Academic Press, New York (1966)Google Scholar
  23. Laing, R.A.: The Performance of the European ALMA Antennas. ESA Workshop on Antennas (2011)Google Scholar
  24. Levy, R.: Structural Engineering of Microwave Antennas. IEEE Press, Piscataway, NJ (1996)Google Scholar
  25. Love, A.W. (ed.): Electromagnetic Horn Antennas. IEEE Press, New York (1976)Google Scholar
  26. Minh, Y.C., Roh, D.-G., Han, S.-T., Kim, H.-G.: Construction of the Korean VLBI Network (KVN). In: New technologies in VLBI, Proceedings of a Symposium of the International VLBI Service for Geodesy and Astrometry. ASP Conference Series, vol. 306, pp. 373–381 (2003)Google Scholar
  27. Perley, R.A., Butler, B.J.: An accurate flux density scale from 1 to 50 GHz. Astrophys. J. Sup. Series 204, 19 (20 p) (2013)ADSCrossRefGoogle Scholar
  28. Ramsay, J.F.: Microwave antenna and waveguide techniques before 1900. Proc. IRE. 46, 405–415 (1958)CrossRefGoogle Scholar
  29. Rusch, W.V.T.: The current state of the reflector antenna art. IEEE Trans. Antennas Propag. 32, 313–329 (1984)ADSCrossRefGoogle Scholar
  30. Rusch, W.V.T.: The current state of the reflector antenna art – entering the 1990s. Proc. IEEE. 80, 113–126 (1992)ADSCrossRefGoogle Scholar
  31. Ruze, J.: The effect of aperture errors on the antenna radiation pattern. Suppl. al Nouvo Cimento. 9, 364–380 (1952)ADSCrossRefGoogle Scholar
  32. Ruze, J.: Lateral feed displacement in a paraboloid. IEEE Trans. Antennas Propag. 13, 660–665 (1965)ADSCrossRefGoogle Scholar
  33. Ruze, J.: Antenna tolerance theory – a review. Proc. IEEE. 54, 633–640 (1966)ADSCrossRefGoogle Scholar
  34. Ruze, J.: Feed support blockage loss in parabolic antennas. Microwave. J. 11, 76–80 (Dec 1968)ADSGoogle Scholar
  35. Scott, P.F., Ryle, M.: A rapid method for measuring the figure of a radio telescope reflector. Mon. Not. Roy. Astron. Soc. 178, 539–545 (1977)ADSCrossRefGoogle Scholar
  36. Seidel, L.: Astr. Nachr. 43, 289, 305, 321 (1856)Google Scholar
  37. Silver, S.: Microwave Antenna Theory and Design MIT Radiation Lab Series, vol. 12. McGraw-Hill, New York (1949)Google Scholar
  38. Siringo, G., Kreysa, E., Kovács, A., Schuller, F., Weiß, A., Esch, W., Gemünd, H.-P., Jethava, N., Lundershausen, G., Colin, A., Güsten, R., Menten, K.M., Beelen, A., Bertoldi, F., Beeman, J.W., Haller, E.E.: The large APEX bolometer camera LABOCA. Astron. Astrophys. 497, 945–962 (2009)ADSCrossRefGoogle Scholar
  39. Stumpff, P.: Astronomische Pointing Theorie für Radioteleskope. Kleinheubacher Berichte. 15, 431–437 (1972)Google Scholar
  40. van Ardenne, A., Bregman, J.D., van Capellen, W.A., Kant, G.W., Bij de Vaate, J.G.: Extending the field of view with phased array techniques: results of European SKA research. Proc. IEEE. 97, 1531–1542 (2009)ADSCrossRefGoogle Scholar
  41. Van Atta, I.C., Silver, S.: Contributions to the antenna field during WW II. Proc. IRE. 50, 692–697 (1962)CrossRefGoogle Scholar
  42. von Hoerner, S.: Design of large steerable antennas. Astron. J. 72, 35–47 (1967)ADSCrossRefGoogle Scholar
  43. van Cappellen, W.A., Bakker, L.: APERTIF: phased array feeds for the Westerbork synthesis radio telescope. IEEE International Symposium on Phased Array Systems and Technology, Waltham (MA), USA, pp. 640–647 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jacob W. M. Baars
    • 1
  • Hans J. Kärcher
    • 2
  1. 1.Max-Planck-Institut für RadioastronomieBonnGermany
  2. 2.MT Mechatronics - consultantKarbenGermany

Personalised recommendations