Recorded Maternal Voice, Recorded Music, or Live Intervention: A Bioecological Perspective

  • Joy V. BrowneEmail author


Introduction: The human infant develops in his or her expected bioecological niche based on experience-dependent regulation of physiology, motor control, and arousal, typically provided by close contact with the mother. Synchrony, intensity, tempo, and rhythm of a mother’s physical and vocal communication are embedded in what the infant experiences and lay the foundation for attachment relationships and optimal development. Infants who have significant medical issues or are early born experience a different developmental niche than would a typically developing infant. This chapter addresses the complexities of exposure of the newborn in intensive care to different models of intimate caregiving, including the mother’s recorded or live voice and recorded or live music, in the context of current knowledge of necessary species-specific, co-regulatory synchronous interactions. Additionally, the chapter explores opportunities and barriers to the provision of optimal mother-infant communication in intensive care.

Aims: The aims of this chapter are to describe foundational developmental science that contributes to our understanding of the components of optimal bioecological niches for developing infants in the NICU and to provide a rationale for promoting optimal intersensory, redundant, synchronous, and rhythmic experiences for the developing infant through the mother’s presence. Additionally, an aim of the chapter is to examine current intervention strategies that may or may not provide optimal bioecological niches for developing infants under intensive care.

Conclusions: Developmental science contributes to our emerging understanding of the optimal bioecological niche for the developing infant. Medically fragile and/or early born infants are thought to have over or underexposure to sensory experiences prompting the addition of live and/or recorded inputs such as the mother’s voice or music and other multisensory stimulation approaches. Research on such interventions has begun to explore their benefits and/or challenges, but findings are not consistently conclusive. From a developmental science and clinical research perspective, the likely most optimal niche for the developing infant is the mother’s body and voice. NICU practices that encourage mothers to be with and communicate with their baby need to be promoted.


Bioecology Recorded mother’s voice Mother’s voice Preterm infant Socioemotional development NICU environments 


  1. Allen, K. A. (2013). Music therapy in the NICU: Is there evidence to support integration for procedural support? Advances in Neonatal Care, 13(5), 349–352. doi: 10.1097/ANC.0b013e3182a0278b CrossRefPubMedGoogle Scholar
  2. Almadhoob, A., & Ohlsson, A. (2015). Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database of Systematic Reviews, 1, CD010333. doi: 10.1002/14651858.CD010333.pub2 PubMedGoogle Scholar
  3. Als, H. (1998). Developmental care in the newborn intensive care unit. Current Opinion in Pediatrics, 10(2), 138–142.CrossRefPubMedGoogle Scholar
  4. Als, H., Butler, S., Kosta, S., & McAnulty, G. (2005). The Assessment of Preterm Infants’ Behavior (APIB): Furthering the understanding and measurement of neurodevelopmental competence in preterm and full-term infants. Mental Retardation and Developmental Disabilities Research Reviews, 11(1), 94–102. doi: 10.1002/mrdd.20053 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Als, H., Tronick, E., Lester, B. M., & Brazelton, T. B. (1977). The Brazelton Neonatal Behavioral Assessment Scale (BNBAS). Journal of Abnormal Child Psychology, 5(3), 215–231.CrossRefPubMedGoogle Scholar
  6. American Academy of Pediatrics, C. o. E. H. (1976). Noise pollution: Neonatal aspects. Pediatrics, 54(4), 476–479.Google Scholar
  7. Arnon, S., Diamant, C., Bauer, S., Regev, R., Sirota, G., & Litmanovitz, I. (2014). Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediatrica, 103(10), 1039–1044. doi: 10.1111/apa.12744 CrossRefPubMedGoogle Scholar
  8. Azarmnejad, E., Sarhangi, F., Javadi, M., & Rejeh, N. (2015). The effect of mother’s voice on arterial blood sampling induced pain in neonates hospitalized in neonate intensive care unit. Global Journal of Health Science, 7(6), 198–204. doi: 10.5539/gjhs.v7n6p198 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bahrick, L. E., & Lickliter, R. (2014). Learning to attend selectively: The dual role of intersensory redundancy. Current Directions in Psychological Science, 23(6), 414–420. doi: 10.1177/0963721414549187 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bellieni, C. V., Cordelli, D. M., Marchi, S., Ceccarelli, S., Perrone, S., Maffei, M., and Buonocore, G. (2007, March/April). Sensorial saturation for neonatal analgesia, The Clinical Journal of Pain 23 3, 219-221.Google Scholar
  11. Bowlby, J. (1954). The effect of separation from the mother in early life. Irish Journal of Medical Science, 339, 121–126.CrossRefGoogle Scholar
  12. Bowlby, J. (1958). The nature of the child’s tie to his mother. The International Journal of Psycho-Analysis, 39(5), 350–373.PubMedGoogle Scholar
  13. Bowlby, J. (1968). Effects on behaviour of disruption of an affectional bond. Eugenics Society Symposia, 4, 94–108.PubMedGoogle Scholar
  14. Bowlby, J. (1982). Attachment and loss: Retrospect and prospect. The American Journal of Orthopsychiatry, 52(4), 664–678.CrossRefPubMedGoogle Scholar
  15. Braadbaart, L., de Grauw, H., Perrett, D. I., Waiter, G. D., & Williams, J. H. (2014). The shared neural basis of empathy and facial imitation accuracy. NeuroImage, 84, 367–375. doi: 10.1016/j.neuroimage.2013.08.061 CrossRefPubMedGoogle Scholar
  16. Brazelton, T. B., Tronick, E., Adamson, L., Als, H., & Wise, S. (1975). Early mother-infant reciprocity. Ciba Foundation Symposium, 33, 137–154.Google Scholar
  17. Bronfenbrenner, U. U., & Ceci, S. J. (1994). Nature-nurture reconceptualized in developmental perspective: A bioecological model. Psychological Review, 101(4), 568–586.CrossRefPubMedGoogle Scholar
  18. Browne, J. V. (2004). Early relationship environments: Physiology of skin-to-skin contact for parents and their preterm infants. Clinics in Perinatology, 31(2), 287–298., vii. doi: 10.1016/j.clp.2004.04.004 CrossRefPubMedGoogle Scholar
  19. Bruck, C., Kreifelts, B., & Wildgruber, D. (2011). Emotional voices in context: A neurobiological model of multimodal affective information processing. Physics of Life Reviews, 8(4), 383–403. doi: 10.1016/j.plrev.2011.10.002 CrossRefPubMedGoogle Scholar
  20. Butler, S. C., O'Sullivan, L. P., Shah, B. L., & Berthier, N. E. (2014). Preference for infant-directed speech in preterm infants. Infant Behavior & Development, 37(4), 505–511. doi: 10.1016/j.infbeh.2014.06.007 CrossRefGoogle Scholar
  21. Caskey, M., Stephens, B., Tucker, R., & Vohr, B. (2011). Importance of parent talk on the development of preterm infant vocalizations. Pediatrics, 128(5), 910–916. doi: 10.1542/peds.2011-0609 CrossRefPubMedGoogle Scholar
  22. Caskey, M., Stephens, B., Tucker, R., & Vohr, B. (2014). Adult talk in the NICU with preterm infants and developmental outcomes. Pediatrics, 133(3), e578–e584. doi: 10.1542/peds.2013-0104 CrossRefPubMedGoogle Scholar
  23. Censullo, M., Lester, B., & Hoffman, J. (1985). Rhythmic patterning in mother-newborn interaction. Nursing Research, 34(6), 342–346.CrossRefPubMedGoogle Scholar
  24. Cohn, J. F., & Tronick, E. (1989). Specificity of infants’ response to mothers’ affective behavior. Journal of the American Academy of Child and Adolescent Psychiatry, 28(2), 242–248. doi: 10.1097/00004583-198903000-00016 CrossRefPubMedGoogle Scholar
  25. Dearn, T., & Shoemark, H. (2014). The effect of maternal presence on premature infant response to recorded music. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 43(3), 341–350. doi: 10.1111/1552-6909.12303 CrossRefPubMedGoogle Scholar
  26. Dorn, F., Wirth, L., Gorbey, S., Wege, M., Zemlin, M., Maier, R. F., & Lemmer, B. (2014). Influence of acoustic stimulation on the circadian and ultradian rhythm of premature infants. Chronobiology International, 31(9), 1062–1074. doi: 10.3109/07420528.2014.948183 CrossRefPubMedGoogle Scholar
  27. El-Dib, M., & Glass, P. (2015). Does exposure of premature infants to repetitive recorded mother sounds improve neurodevelopmental outcome? Proceedings of the National Academy of Sciences of the United States of America, 112(31), E4166. doi: 10.1073/pnas.1507315112 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Feldman, R. (2015). The adaptive human parental brain: Implications for children's social development. Trends in Neurosciences, 38(6), 387–399. doi: 10.1016/j.tins.2015.04.004 CrossRefPubMedGoogle Scholar
  29. Feldman, R. (2016). The neurobiology of mammalian parenting and the biosocial context of human caregiving. Hormones and Behavior, 77, 3–17. doi: 10.1016/j.yhbeh.2015.10.001 CrossRefPubMedGoogle Scholar
  30. Feldman, R., & Eidelman, A. I. (2007). Maternal postpartum behavior and the emergence of infant-mother and infant-father synchrony in preterm and full-term infants: The role of neonatal vagal tone. Developmental Psychobiology, 49(3), 290–302. doi: 10.1002/dev.20220 CrossRefPubMedGoogle Scholar
  31. Feldman, R., Rosenthal, Z., & Eidelman, A. I. (2014). Maternal-preterm skin-to-skin contact enhances child physiologic organization and cognitive control across the first 10 years of life. Biological Psychiatry, 75(1), 56–64. doi: 10.1016/j.biopsych.2013.08.012 CrossRefPubMedGoogle Scholar
  32. Filippa, M., Devouche, E., Arioni, C., Imberty, M., & Gratier, M. (2013). Live maternal speech and singing have beneficial effects on hospitalized preterm infants. Acta Paediatrica, 102(10), 1017–1020. doi: 10.1111/apa.12356 CrossRefPubMedGoogle Scholar
  33. Gitto, E., Pellegrino, S., Manfrida, M., Aversa, S., Trimarchi, G., Barberi, I., & Reiter, R. J. (2012). Stress response and procedural pain in the preterm newborn: The role of pharmacological and non-pharmacological treatments. European Journal of Pediatrics, 171(6), 927–933. doi: 10.1007/s00431-011-1655-7 CrossRefPubMedGoogle Scholar
  34. Gonzalez-Liencres, C., Shamay-Tsoory, S. G., & Brune, M. (2013). Towards a neuroscience of empathy: Ontogeny, phylogeny, brain mechanisms, context and psychopathology. Neuroscience and Biobehavioral Reviews, 37(8), 1537–1548. doi: 10.1016/j.neubiorev.2013.05.001 CrossRefPubMedGoogle Scholar
  35. Gottfried, A. W., & Gaiter, J. L. (1985). Infant stress under intensive care. Baltimore, MD: University Park Press.Google Scholar
  36. Gray, L., & Philbin, M. K. (2000). Measuring sound in hospital nurseries. Journal of Perinatology, 20(8 Pt 2), S100–S104.CrossRefPubMedGoogle Scholar
  37. Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559.CrossRefPubMedGoogle Scholar
  38. Hofer, M. (1994). Hidden regulators in attachment separation and loss. Monographs of the Society for Research in Child Development, 59(2/3), 192–207.CrossRefPubMedGoogle Scholar
  39. Jobe, A. H. (2014). A risk of sensory deprivation in the neonatal intensive care unit. The Journal of Pediatrics, 164(6), 1265–1267. doi: 10.1016/j.jpeds.2014.01.072 CrossRefPubMedGoogle Scholar
  40. Karger, R. H. (1979). Synchrony in mother-infant interactions. Child Development, 50(3), 882–885.CrossRefPubMedGoogle Scholar
  41. Krueger, C. (2010). Exposure to maternal voice in preterm infants: A review. Advances in Neonatal Care, 10(1), 13–18.; quiz 19–20. doi: 10.1097/ANC.0b013e3181cc3c69 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kuhn, P., Zores, C., Langlet, C., Escande, B., Astruc, D., & Dufour, A. (2013). Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators. Acta Paediatrica, 102(10), 949–954. doi: 10.1111/apa.12330 CrossRefPubMedGoogle Scholar
  43. Lantz, B., & Ottosson, C. (2013). Parental interaction with infants treated with medical technology. Scandinavian Journal of Caring Sciences, 27(3), 597–607. doi: 10.1111/j.1471-6712.2012.01061.x CrossRefPubMedGoogle Scholar
  44. Lasky, R. E., & Williams, A. L. (2009). Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics, 123(2), 540–546. doi: 10.1542/peds.2007-3418 CrossRefPubMedGoogle Scholar
  45. Leclere, C., Viaux, S., Avril, M., Achard, C., Chetouani, M., Missonnier, S., & Cohen, D. (2014). Why synchrony matters during mother-child interactions: A systematic review. PLoS One, 9(12), e113571. doi: 10.1371/journal.pone.0113571 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lester, B. M., Andreozzi-Fontaine, L., Tronick, E., & Bigsby, R. (2014). Assessment and evaluation of the high risk neonate: The NICU Network Neurobehavioral Scale. Journal of Visualized Experiments, 90. doi: 10.3791/3368
  47. Lester, B. M., Hawes, K., Abar, B., Sullivan, M., Miller, R., Bigsby, R., … Padbury, J. F. (2014). Single-family room care and neurobehavioral and medical outcomes in preterm infants. Pediatrics, 134(4), 754–760. doi: 10.1542/peds.2013-4252 CrossRefPubMedGoogle Scholar
  48. Lester, B. M., Hoffman, J., & Brazelton, T. B. (1985). The rhythmic structure of mother-infant interaction in term and preterm infants. Child Development, 56(1), 15–27.CrossRefPubMedGoogle Scholar
  49. Lester, B. M., Miller, R. J., Hawes, K., Salisbury, A., Bigsby, R., Sullivan, M. C., & Padbury, J. F. (2011). Infant neurobehavioral development. Seminars in Perinatology, 35(1), 8–19. doi: 10.1053/j.semperi.2010.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lickliter, R. (2011). The integrated development of sensory organization. Clinics in Perinatology, 38(4), 591–603. doi: 10.1016/j.clp.2011.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Linn, P. L., Horowitz, F. D., Buddin, B. J., Leake, J., & Fox, H. A. (1985). An ecological description of a neonatal intensive care unit. In Infant stress under intensive care (pp. 83–112). Baltimore, MD: University Park Press.Google Scholar
  52. Loewy, R., Fisher, M., Schlosser, D. A., Biagianti, B., Stuart, B., Mathalon, D. H., & Vinogradov, S. (2016). Intensive auditory cognitive training improves verbal memory in adolescents and young adults at clinical high risk for psychosis. Schizophrenia Bulletin. doi: 10.1093/schbul/sbw009
  53. Long, J. G., Lucey, J. F., & Phillips, A. C. (1980). Noise and hypoxemia in the neonatal intensive care unit. Pediatrics, 65(1), 143–145.PubMedGoogle Scholar
  54. Moon, C. (2011). The role of early auditory development in attachment and communication. Clinics in Perinatology, 38(4), 657–669. doi: 10.1016/j.clp.2011.08.009 CrossRefPubMedGoogle Scholar
  55. Morelius, E., He, H. G., & Shorey, S. (2016). Salivary cortisol reactivity in preterm infants in neonatal intensive care: An integrative review. International Journal of Environmental Research and Public Health, 13(3). doi: 10.3390/ijerph13030337
  56. Morris, B. H., Philbin, M. K., & Bose, C. (2000). Physiological effects of sound on the newborn. Journal of Perinatology, 20(8 Pt 2), S55–S60.CrossRefPubMedGoogle Scholar
  57. Ortenstrand, A., Westrup, B., Brostrom, E. B., Sarman, I., Akerstrom, S., Brune, T., … Waldenstrom, U. (2010). The Stockholm Neonatal Family Centered Care Study: Effects on length of stay and infant morbidity. Pediatrics, 125(2), e278–e285. doi: 10.1542/peds.2009-1511 CrossRefPubMedGoogle Scholar
  58. Philbin, M. K., & Gray, L. (2002). Changing levels of quiet in an intensive care nursery. Journal of Perinatology, 22(6), 455–460. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  59. Philbin, M. K., Lickliter, R., & Graven, S. N. (2000). Sensory experience and the developing organism: A history of ideas and view to the future. Journal of Perinatology, 20(8 Pt 2), S2–S5.CrossRefPubMedGoogle Scholar
  60. Picciolini, O., Porro, M., Meazza, A., Gianni, M. L., Rivoli, C., Lucco, G., … Mosca, F. (2014). Early exposure to maternal voice: Effects on preterm infants development. Early Human Development, 90(6), 287–292. doi: 10.1016/j.earlhumdev.2014.03.003 CrossRefPubMedGoogle Scholar
  61. Pineda, R. G., Neil, J., Dierker, D., Smyser, C. D., Wallendorf, M., Kidokoro, H., … Inder, T. (2014). Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. The Journal of Pediatrics, 164(1), 52–60. e52. doi: 10.1016/j.jpeds.2013.08.047 CrossRefPubMedGoogle Scholar
  62. Pineda, R. G., Stransky, K. E., Rogers, C., Duncan, M. H., Smith, G. C., Neil, J., & Inder, T. (2012). The single-patient room in the NICU: Maternal and family effects. Journal of Perinatology, 32(7), 545–551. doi: 10.1038/jp.2011.144 CrossRefPubMedGoogle Scholar
  63. Rand, K., & Lahav, A. (2014). Impact of the NICU environment on language deprivation in preterm infants. Acta Paediatrica, 103(3), 243–248. doi: 10.1111/apa.12481 CrossRefPubMedGoogle Scholar
  64. Rosa, E. M., & Tudge, J. (2013). Urie Bronfenbrenner’s theory of human development: Its evolution from ecology to bioecology. Journal of Family Theory & Review, 5(4), 243–258. doi: 10.1111/jftr.12022 CrossRefGoogle Scholar
  65. Shoemark, H., Hanson-Abromeit, D., & Stewart, L. (2015). Constructing optimal experience for the hospitalized newborn through neuro-based music therapy. Frontiers in Human Neuroscience, 9, 487. doi: 10.3389/fnhum.2015.00487 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Simpson, E. A., Murray, L., Paukner, A., & Ferrari, P. F. (2014). The mirror neuron system as revealed through neonatal imitation: Presence from birth, predictive power and evidence of plasticity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1644), 20130289. doi: 10.1098/rstb.2013.0289 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Super, C. M., & Harkness, S. (1994). The developmental niche: A theoretical framework for analyzing the household production of health. Social Science & Medicine, 38(2), 217–226. doi: 10.1016/0277-9536(94)90391-3 CrossRefGoogle Scholar
  68. Tronick, E. Z. (1989). Emotions and emotional communication in infants. The American Psychologist, 44(2), 112–119.CrossRefPubMedGoogle Scholar
  69. van Manen, M. A. (2015). The ethics of an ordinary medical technology. Qualitative Health Research, 25(7), 996–1004. doi: 10.1177/1049732314554101 CrossRefPubMedGoogle Scholar
  70. Webb, A. R., Heller, H. T., Benson, C. B., & Lahav, A. (2015). Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proceedings of the National Academy of Sciences of the United States of America, 112(10), 3152–3157. doi: 10.1073/pnas.1414924112 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Welch, M. G., Hofer, M. A., Brunelli, S. A., Stark, R. I., Andrews, H. F., Austin, J., … Family Nurture Intervention Trial, G. (2012). Family nurture intervention (FNI): Methods and treatment protocol of a randomized controlled trial in the NICU. BMC Pediatrics, 12, 14. doi: 10.1186/1471-2431-12-14 PubMedPubMedCentralGoogle Scholar
  72. Welch, M. G., Myers, M. M., Grieve, P. G., Isler, J. R., Fifer, W. P., Sahni, R., … Group, F. N. I. T, Group, F. N. I. T. (2014). Electroencephalographic activity of preterm infants is increased by Family Nurture Intervention: A randomized controlled trial in the NICU. Clinical Neurophysiology, 125(4), 675–684. doi: 10.1016/j.clinph.2013.08.021 CrossRefPubMedGoogle Scholar
  73. Westrup, B. (2015). Family-centered developmentally supportive care: The Swedish example. Archives de Pédiatrie, 22(10), 1086–1091. doi: 10.1016/j.arcped.2015.07.005 CrossRefPubMedGoogle Scholar
  74. White, R. D. (2003). Individual rooms in the NICU – An evolving concept. Journal of Perinatology, 23(Suppl 1), S22–S24. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  75. White, R. D., Smith, J. A., Shepley, M. M., & Committee to Establish Recommended Standards for Newborn, I. C. U. D. (2013). Recommended standards for newborn ICU design, eighth edition. Journal of Perinatology, 33(Suppl 1), S2–16. doi: 10.1038/jp.2013.10 CrossRefPubMedGoogle Scholar
  76. White-Traut, R., Norr, K. F., Fabiyi, C., Rankin, K. M., Li, Z., & Liu, L. (2013). Mother-infant interaction improves with a developmental intervention for mother-preterm infant dyads. Infant Behavior & Development, 36(4), 694–706. doi: 10.1016/j.infbeh.2013.07.004 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Colorado, School of Medicine, Center for Family & Infant InteractionAuroraUSA

Personalised recommendations