Learning Hybrid Process Models from Events

Process Discovery Without Faking Confidence
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10445)


Process discovery techniques return process models that are either formal (precisely describing the possible behaviors) or informal (merely a “picture” not allowing for any form of formal reasoning). Formal models are able to classify traces (i.e., sequences of events) as fitting or non-fitting. Most process mining approaches described in the literature produce such models. This is in stark contrast with the over 25 available commercial process mining tools that only discover informal process models that remain deliberately vague on the precise set of possible traces. There are two main reasons why vendors resort to such models: scalability and simplicity. In this paper, we propose to combine the best of both worlds: discovering hybrid process models that have formal and informal elements. As a proof of concept we present a discovery technique based on hybrid Petri nets. These models allow for formal reasoning, but also reveal information that cannot be captured in mainstream formal models. A novel discovery algorithm returning hybrid Petri nets has been implemented in ProM and has been applied to several real-life event logs. The results clearly demonstrate the advantages of remaining “vague” when there is not enough “evidence” in the data or standard modeling constructs do not “fit”. Moreover, the approach is scalable enough to be incorporated in industrial-strength process mining tools.


Process mining Process discovery Petri nets BPM 


  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learning Hybrid Process Models From Events: Process Discovery Without Faking Confidence (Experimental Results). ArXiv e-prints 1703.06125 (2017).
  3. 3.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  4. 4.
    Adriansyah, A.: Aligning observed and modeled behavior. Ph.D thesis, Eindhoven University of Technology, April 2014Google Scholar
  5. 5.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring precision of modeled behavior. ISeB 13(1), 37–67 (2015)CrossRefGoogle Scholar
  6. 6.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75183-0_27CrossRefGoogle Scholar
  7. 7.
    Famelis, M., Salay, R., Chechik, M., Models, P.: Towards modeling and reasoning with uncertainty. In: International Conference on Software Engineering (ICSE 2012), pp. 573–583. IEEE Computer Society (2012)Google Scholar
  8. 8.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75183-0_24CrossRefGoogle Scholar
  9. 9.
    Herrmann, T., Hoffmann, M., Loser, K.U., Moysich, K.: Semistructured models are surprisingly useful for user-centered design. In: De Michelis, G., Giboin, A., Karsenty, L., Dieng, R. (eds.) Designing Cooperative Systems (Coop 2000), pp. 159–174. IOS Press, Amsterdam (2000)Google Scholar
  10. 10.
    Herrmann, T., Loser, K.U.: Vagueness in models of socio-technical systems. Behav. Inf. Technol. 18(5), 313–323 (1999)CrossRefGoogle Scholar
  11. 11.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38697-8_17CrossRefGoogle Scholar
  12. 12.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). doi: 10.1007/978-3-319-06257-0_6CrossRefGoogle Scholar
  13. 13.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model., pp. 1–33 (2016). doi: 10.1007/s10270-016-0545-xCrossRefGoogle Scholar
  14. 14.
    Salay, R., Chechik, M., Horkoff, J., Di Sandro, A.: Managing requirements uncertainty with partial models. Requirements Eng. 18(2), 107–128 (2013)CrossRefGoogle Scholar
  15. 15.
    Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13675-7_14CrossRefzbMATHGoogle Scholar
  16. 16.
    van Dongen, B.F.: BPI Challenges (2011–2017), Real life Event Logs Collection (2017).
  17. 17.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)Google Scholar
  18. 18.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inf. 94, 387–412 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.FBK-IRSTTrentoItaly

Personalised recommendations