An Eye into the Future: Leveraging A-priori Knowledge in Predictive Business Process Monitoring

  • Chiara Di Francescomarino
  • Chiara Ghidini
  • Fabrizio Maria Maggi
  • Giulio Petrucci
  • Anton Yeshchenko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10445)

Abstract

Predictive business process monitoring aims at leveraging past process execution data to predict how ongoing (uncompleted) process executions will unfold up to their completion. Nevertheless, cases exist in which, together with past execution data, some additional knowledge (a-priori knowledge) about how a process execution will develop in the future is available. This knowledge about the future can be leveraged for improving the quality of the predictions of events that are currently unknown. In this paper, we present two techniques - based on Recurrent Neural Networks with Long Short-Term Memory (LSTM) cells - able to leverage knowledge about the structure of the process execution traces as well as a-priori knowledge about how they will unfold in the future for predicting the sequence of future activities of ongoing process executions. The results obtained by applying these techniques on six real-life logs show an improvement in terms of accuracy over a plain LSTM-based baseline.

Keywords

Predictive Process Monitoring Recurrent Neural Networks Linear Temporal Logic A-priori Knowledge 

Notes

Acknowledgments

This research has been partially carried out within the Euregio IPN12 KAOS, which is funded by the “European Region Tyrol-South Tyrol-Trentino”(EGTC) under the first call for basic research projects.

References

  1. 1.
    3TU Data Center: BPI Challenge 2011 Event Log (2011). doi: 10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
  2. 2.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  3. 3.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). software available from tensorflow.org. http://tensorflow.org/
  4. 4.
    Buijs, J.: Environmental permit application process (“wabo”), coselog project - municipality 4 (2014). doi: 10.4121/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32
  5. 5.
    Chollet, F.: Keras (2015). https://github.com/fchollet/keras
  6. 6.
    Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38709-8_8CrossRefGoogle Scholar
  7. 7.
    Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)CrossRefGoogle Scholar
  8. 8.
    Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi, W.: Predictive business process monitoring framework with hyperparameter optimization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 361–376. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_22CrossRefGoogle Scholar
  9. 9.
    Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. IEEE Trans. Serv. Comput. PP(99), 1–18 (2016)Google Scholar
  10. 10.
    van Dongen, B.: Bpi challenge 2012 (2012). doi: 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
  11. 11.
    van Dongen, B.: Bpi challenge 2017 (2017). doi: 10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
  12. 12.
    Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). doi: 10.1007/978-3-319-58457-7_24CrossRefGoogle Scholar
  13. 13.
    Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decision Support Systems (2017)CrossRefGoogle Scholar
  14. 14.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33606-5_18CrossRefGoogle Scholar
  15. 15.
    Goodfellow, I., Bengio, Y., Courville, A.: Sequence Modeling: Recurrent and Recursive Nets. In: Deep Learning, pp. 373–420. MIT Press, Cambridge (2016)Google Scholar
  16. 16.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  17. 17.
    Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_21CrossRefGoogle Scholar
  18. 18.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31095-9_18CrossRefGoogle Scholar
  19. 19.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). doi: 10.1007/978-3-319-07881-6_31CrossRefGoogle Scholar
  20. 20.
    Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: Proceedings of the 2012 Annual SRII Global Conference, SRII 2012, pp. 313–322. IEEE Computer Society, Washington, DC (2012)Google Scholar
  21. 21.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_22CrossRefGoogle Scholar
  22. 22.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pp. 46–57. IEEE Computer Society (1977)Google Scholar
  23. 23.
    Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. CoRR abs/1602.07566 (2016)Google Scholar
  24. 24.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45005-1_27CrossRefGoogle Scholar
  25. 25.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay prediction in multi-class service processes. Inf. Syst. 53, 278–295 (2015)CrossRefGoogle Scholar
  26. 26.
    Steeman, W.: Bpi challenge 2013 (2013). doi: 10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
  27. 27.
    Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_18CrossRefGoogle Scholar
  28. 28.
    Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). doi: 10.1007/978-3-319-59536-8_30CrossRefGoogle Scholar
  29. 29.
    Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). doi: 10.1007/978-3-319-45348-4_23CrossRefGoogle Scholar
  30. 30.
    Tillmann, C., Ney, H.: Word reordering and a dynamic programming beam search algorithm for statistical machine translation. Comput. Linguist. 29(1), 97–133 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chiara Di Francescomarino
    • 1
  • Chiara Ghidini
    • 1
  • Fabrizio Maria Maggi
    • 2
  • Giulio Petrucci
    • 1
    • 3
  • Anton Yeshchenko
    • 2
  1. 1.FBK-IRSTTrentoItaly
  2. 2.University of TartuTartuEstonia
  3. 3.University of TrentoTrentoItaly

Personalised recommendations