Advertisement

Introduction to Quantum Foundations

  • Martin Ringbauer
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This section introduces a few concepts that are central not just to quantum foundational research, but also for practical applications in quantum information theory.

References

  1. 1.
    Ringbauer, M., Fedrizzi, A., Berry, D.W., White, A.G.: Information causality in the quantum and post-quantum regime. Sci. Rep. 4, 6955 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Barnum, H., Wilce, A.: Post-Classical Probability Theory. Informational Foundations and Foils, Quantum Theory (2012)Google Scholar
  4. 4.
    Janotta, P., Hinrichsen, H.: Generalized probability theories: what determines the structure of quantum theory? J. Phys. A 47, 323001 (2014)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chiribella, G., Spekkens, R. W. (eds.) .: Quantum Theory: Informational Foundations and Foils. Springer, Dordrecht (2016)Google Scholar
  6. 6.
    Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)CrossRefGoogle Scholar
  7. 7.
    Cavalcanti, E.G., Wiseman, H.M.: Bell nonlocality, signal locality and unpredictability (or What Bohr could have told Einstein at Solvay had he known about Bell experiments ). Found. Phys. 42, 1329–1338 (2012)ADSMathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fuchs, C.A., Mermin, N.D., Schack, R.: An introduction to QBism with an application to the locality of quantum mechanics. Am. J. Phys. 82, 749–754 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSMATHCrossRefGoogle Scholar
  10. 10.
    Bohm, D.: Quantum Theory. Dover Publications, New York (1989)Google Scholar
  11. 11.
    Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Cambridge Phil. Soc. 31, 555–563 (1935)ADSMATHCrossRefGoogle Scholar
  12. 12.
    Bell, J. S.: Bertlmann’s socks and the nature of reality. In: Speakables and Unspeakables in Quantum Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  13. 13.
    Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)ADSMathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86, 012103 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    Spekkens, R.: Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75, 032110 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Wood, C.J., Spekkens, R.W.: The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning. New J. Phys. 17, 033002 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  20. 20.
    Bell, J.S.: The theory of local beables. Epistemological Lett. 9, 11–24 (1976)Google Scholar
  21. 21.
    Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)CrossRefGoogle Scholar
  25. 25.
    Modi, K.: A pedagogical overview of quantum discord. Open. Syst. Inf. Dyn. 21, 1440006 (2014)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Datta, A.: Quantum optics: discord in the ranks. Nat. Photon. 6, 724–725 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Allcock, J., Brunner, N., Pawlowski, M., Scarani, V.: Recovering part of the boundary between quantum and nonquantum correlations from information causality. Phys. Rev. A 80, 040103 (2009)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Masanes, L., Acin, A., Gisin, N.: General properties of nonsignaling theories. Phys. Rev. A 73, 012112 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Skrzypczyk, P., Brunner, N., Popescu, S.: Emergence of quantum correlations from nonlocality swapping. Phys. Rev. Lett. 102, 110402 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Pawłowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Zukowski, M.: Information causality as a physical principle. Nature 461, 1101–4 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    van Dam, W.: Implausible consequences of superstrong nonlocality (2005). arXiv:quant-ph/0501159
  33. 33.
    Brassard, G., Buhrman, H., Linden, N., Methot, A.A., Tapp, A., Unger, F.: A limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96, 250401 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Linden, N., Popescu, S., Short, A., Winter, A.: Quantum nonlocality and beyond: limits from nonlocal computation. Phys. Rev. Lett. 99, 180502 (2007)ADSMathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Navascues, M., Wunderlich, H.: A glance beyond the quantum model. Proc. Royal Soc. A 466, 881–890 (2009)ADSMathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Fritz, T., Sainz, A.B., Augusiak, R., Brask, J.B., Chaves, R., Leverrier, A., Acín, A.: Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Barnum, H., Beigi, S., Boixo, S., Elliott, M.B., Wehner, S.: Local quantum measurement and no-signaling imply quantum correlations. Phys. Rev. Lett. 104, 140401 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Acín, A., Augusiak, R., Cavalcanti, D., Hadley, C., Korbicz, J.K., Lewenstein, M., Masanes, L., Piani, M.: Unified framework for correlations in terms of local quantum observables. Phys. Rev. Lett. 104, 140404 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Brunner, N., Skrzypczyk, P.: Nonlocality distillation and postquantum theories with trivial communication complexity. Phys. Rev. Lett. 102, 160403 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Allcock, J., Brunner, N., Linden, N., Popescu, S., Skrzypczyk, P., Vértesi, T.: Closed sets of nonlocal correlations. Phys. Rev. A 80, 062107 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Gallego, R., Würflinger, L.E., Acín, A., Navascués, M.: Quantum correlations require multipartite information principles. Phys. Rev. Lett. 107, 210403 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and a lower bound for 1-way quantum automata. Proc. 31. STOC 12 (1998)Google Scholar
  43. 43.
    Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum finite automata. J. ACM 49, 496–511 (2002)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Ambainis, A., Leung, D., Mancinska, L., Ozols, M.: Quantum random access codes with shared randomness (2008). arXiv:0810.2937
  45. 45.
    Pawłowski, M., Scarani, V.: Information causality (2011). arXiv:1112.1142
  46. 46.
    Al-Safi, S.W., Short, A.J.: Information causality from an entropic and a probabilistic perspective. Phys. Rev. A 84, 042323 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Pitowsky, I.: Correlation polytopes: their geometry and complexity. Math. Program. 50, 395–414 (1991)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., Roberts, D.: Non-local correlations as an information theoretic resource. Phys. Rev. A 71, 022101 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Christof, T., Löbel, A.: PORTA–POlyhedron Representation Transformation Algorithm. http://porta.zib.de/
  50. 50.
    Wehner, S.: Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Phys. Rev. A 73, 022110 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    Navascués, M., Pironio, S., Acín, A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98, 010401 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Navascués, M., Pironio, S., Acín, A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10, 073013 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Navascués, M., Guryanova, Y., Hoban, M.J., Acín, A.: Almost quantum correlations. Nat. Commun. 6, 6288 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Spekkens, R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71, 052108 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Jennings, D., Leifer, M.: No return to classical reality. Contemp. Phys. 57, 60–82 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    Leifer, M.S.: Is the quantum state real ? An extended review of \(\psi \)-ontology theorems. Quanta 3, 67–155 (2014)CrossRefGoogle Scholar
  57. 57.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)ADSMathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Kochen, S.B., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)MathSciNetMATHGoogle Scholar
  59. 59.
    Spekkens, R.W.: The status of determinism in proofs of the impossibility of a noncontextual model of quantum theory. Found. Phys. 44, 1125–1155 (2014)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Kunjwal, R., Spekkens, R.W.: From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism. Phys. Rev. Lett. 115, 110403 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Yu, X.-D., Guo, Y.-Q., Tong, D.M.: A proof of the Kochen-Specker theorem can always be converted to a state-independent noncontextuality inequality. New J. Phys. 17, 93001 (2015)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Klyachko, A. a., Can, M. A., Binicioğlu, S., Shumovsky, A. S.: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008)Google Scholar
  64. 64.
    Kirchmair, G., Zähringer, F., Gerritsma, R., Kleinmann, M., Gühne, O., Cabello, A., Blatt, R., Roos, C.F.: State-independent experimental test of quantum contextuality. Nature 460, 494–497 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    Lapkiewicz, R., Li, P., Schaeff, C., Langford, N.K., Ramelow, S., Wieśniak, M., Zeilinger, A.: Experimental non-classicality of an indivisible quantum system. Nature 474, 490–493 (2011)CrossRefGoogle Scholar
  66. 66.
    Zhang, X., Um, M., Zhang, J., An, S., Wang, Y., Deng, D.-L., Shen, C., Duan, L.-M., Kim, K.: State-independent experimental test of quantum contextuality with a single trapped ion. Phys. Rev. Lett. 110, 070401 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    Barrett, J., Kent, A.: Non-contextuality, finite precision measurement and the Kochen-Specker theorem. Stud. Hist. Philos. Mod. Phys. 35, 151–176 (2004)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Mazurek, M.D., Pusey, M.F., Kunjwal, R., Resch, K.J., Spekkens, R.W.: An experimental test of noncontextuality without unphysical idealizations. Nat. Commun. 7, 11780 (2016)ADSCrossRefGoogle Scholar
  69. 69.
    Araújo, M., Quintino, M.T., Budroni, C., Cunha, M.T., Cabello, A.: All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    Pusey, M.F., Leifer, M.S.: Logical pre- and post-selection paradoxes are proofs of contextuality. Electron. Notes Theor. Comput. Sci. 195, 295–306 (2015)CrossRefGoogle Scholar
  71. 71.
    Spekkens, R.W.: Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett. 101, 020401 (2008)ADSMathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Pusey, M. F.: The robust noncontextuality inequalities in the simplest scenario (2015). arXiv:1506.04178
  73. 73.
    Larsson, J.Å.: A contextual extension of Spekkens’ toy model. AIP Conf. Proc. 1424, 211–220 (2012)ADSMATHCrossRefGoogle Scholar
  74. 74.
    Chaves, R.: Entropic inequalities as a necessary and sufficient condition to noncontextuality and locality. Phys. Rev. A 87, 022102 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    Cabello, A., Severini, S., Winter, A.: (Non-)Contextuality of physical theories as an axiom (2010). arXiv:1010.2163
  76. 76.
    Leifer, M.S., Maroney, O.J.E.: Maximally epistemic interpretations of the quantum state and contextuality. Phys. Rev. Lett. 110, 120401 (2013)ADSCrossRefGoogle Scholar
  77. 77.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal, computation, blind quantum. In: 50th Annual IEEE Symposium on Foundations of Computer. Science, 517–526 (2009)Google Scholar
  78. 78.
    Nielsen, M. A., Chuang, I. L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  79. 79.
    Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)ADSCrossRefGoogle Scholar
  80. 80.
    Khalique, A., Tittel, W., Sanders, B.C.: Practical long-distance quantum communication using concatenated entanglement swapping. Phys. Rev. A 88, 022336 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)ADSMathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)ADSCrossRefGoogle Scholar
  83. 83.
    Żukowski, M., Brukner, Č.: Bell’s theorem for general N-Qubit states. Phys. Rev. Lett. 88, 210401 (2002)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Mitchell, P., Popescu, S., Roberts, D.: Conditions for the confirmation of three-particle nonlocality. Phys. Rev. A 70, 060101 (2004)ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987)ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    Bancal, J.-D., Brunner, N., Gisin, N., Liang, Y.-C.: Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions. Phys. Rev. Lett. 106, 020405 (2011)ADSCrossRefGoogle Scholar
  87. 87.
    Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987–997 (1993)ADSCrossRefGoogle Scholar
  89. 89.
    Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)ADSMathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Mermin, N.D.: Quantum mysteries refined. Am. J. Phys. 62, 880 (1994)ADSMathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Kwiat, P.G., Hardy, L.: The mystery of the quantum cakes. Am. J. Phys. 68, 33 (2000)ADSCrossRefGoogle Scholar
  92. 92.
    Rabelo, R., Zhi, L.Y., Scarani, V.: Device-independent bounds for Hardy’s experiment. Phys. Rev. Lett. 109, 180401 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    Mermin, N.D.: Is the moon there when nobody looks? Reality and the quantum theory. Phys. Today 38, 38–47 (1985)CrossRefGoogle Scholar
  94. 94.
    Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)ADSMathSciNetMATHCrossRefGoogle Scholar
  96. 96.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)ADSCrossRefGoogle Scholar
  97. 97.
    Kofler, J., Brukner, Č.: Condition for macroscopic realism beyond the Leggett-Garg inequalities. Phys. Rev. A 87, 052115 (2013)ADSCrossRefGoogle Scholar
  98. 98.
    Maroney, O. J. E., Timpson, C. G.: Quantum- vs. Macro- Realism: What does the Leggett-Garg Inequality actually test? (2014). arXiv:1412.6139
  99. 99.
    Emary, C., Lambert, N., Nori, F.: Leggett-Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    Clemente, L., Kofler, J.: No fine theorem for macrorealism: limitations of the Leggett-Garg inequality. Phys. Rev. Lett. 116, 150401 (2016)ADSCrossRefGoogle Scholar
  101. 101.
    Kofler, J., Brukner, Č.: Classical world arising out of quantum physics under the restriction of coarse-grained measurements. Phys. Rev. Lett. 99, 180403 (2007)ADSCrossRefGoogle Scholar
  102. 102.
    Dakić, B., Paterek, T., Brukner, Č.: Density cubes and higher-order interference theories. New J. Phys. 16, 023028 (2014)ADSCrossRefGoogle Scholar
  103. 103.
    Clemente, L., Kofler, J.: Necessary and sufficient conditions for macroscopic realism from quantum mechanics. Phys. Rev. A 91, 062103 (2015)ADSCrossRefGoogle Scholar
  104. 104.
    Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M., Tüxen, J.: Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu. Phys. Chem. Chem. Phys. 15, 14696 (2013)CrossRefGoogle Scholar
  105. 105.
    Ringbauer, M., Weinhold, T. J., White, A. G., Vanner, M. R.: Generation of mechanical interference fringes by multi-photon quantum measurement (2016). arXiv:1602.05955
  106. 106.
    Knee, G.C., Kakuyanagi, K., Yeh, M.-C., Matsuzaki, Y., Toida, H., Yamaguchi, H., Saito, S., Leggett, A.J., Munro, W.J.: A strict experimental test of macroscopic realism in a superconducting flux qubit. Nat. Commun. 7, 13253 (2016)ADSCrossRefGoogle Scholar
  107. 107.
    Maroney, O.: Measurements, disturbances and the quantum three box paradox. Stud. Hist. Philos. Sci. B, 16 (2017)Google Scholar
  108. 108.
    Leifer, M.S., Spekkens, R.W.: Pre- and post-selection paradoxes and contextuality in quantum mechanics. Phys. Rev. Lett. 95, 200405 (2005)ADSMATHCrossRefGoogle Scholar
  109. 109.
    Leifer, M.S., Spekkens, R.W.: Logical pre- and post-selection paradoxes, measurement-disturbance contextuality. Int. J. Theor. Phys. 44, 1977–1987 (2005)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Aharonov, Y., Vaidman, L.: Complete description of a quantum system at a given time. J. Phys. A 24, 2315–2328 (1991)ADSMathSciNetCrossRefGoogle Scholar
  111. 111.
    Vaidman, L.: Weak-measurement elements of reality. Found. Phys. 26, 895–906 (1996)ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    Aharonov, Y., Albert, D., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)ADSCrossRefGoogle Scholar
  113. 113.
    Wiseman, H.M.: Grounding Bohmian mechanics in weak values and bayesianism. New J. Phys. 9, 165–165 (2007)ADSCrossRefGoogle Scholar
  114. 114.
    Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)ADSMATHCrossRefGoogle Scholar
  115. 115.
    Dressel, J., Malik, M., Miatto, F.M., Jordan, A.N., Boyd, R.W.: Colloquium: Understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307–316 (2014)ADSCrossRefGoogle Scholar
  116. 116.
    Dressel, J., Jordan, A. N.: Contextual-value approach to the generalized measurement of observables. Phys. Rev. A 85, 022123 (2012)Google Scholar
  117. 117.
    Wu, S., Li, Y.: Weak measurements beyond the Aharonov-Albert-Vaidman formalism. Phys. Rev. A 83, 052106 (2011)ADSCrossRefGoogle Scholar
  118. 118.
    Bub, J., Brown, H.: Curious properties of quantum ensembles which have been both preselected and post-selected. Phys. Rev. Lett. 56, 2337–2340 (1986)ADSMathSciNetCrossRefGoogle Scholar
  119. 119.
    Jozsa, R.: Complex weak values in quantum measurement. Phys. Rev. A 76, 044103 (2007)ADSCrossRefGoogle Scholar
  120. 120.
    Ferrie, C., Combes, J.: Classical correlation alone supplies the anomaly to weak values (2014). arXiv:1410.8067
  121. 121.
    Bliokh, K.Y., Bekshaev, A.Y., Kofman, A.G., Nori, F.: Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New J. Phys. 15, 073022 (2013)ADSCrossRefGoogle Scholar
  122. 122.
    Ferrie, C., Combes, J.: How the result of a single coin toss can turn out to be 100 heads. Phys. Rev. Lett. 113, 120404 (2014)ADSCrossRefGoogle Scholar
  123. 123.
    Karanjai, A., Cavalcanti, E.G., Bartlett, S.D., Rudolph, T.: Weak values in a classical theory with an epistemic restriction. New J. Phys. 17, 073015 (2015)ADSCrossRefGoogle Scholar
  124. 124.
    Pusey, M.F.: Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113, 200401 (2014)ADSCrossRefGoogle Scholar
  125. 125.
    Dressel, J.: Weak values as interference phenomena. Phys. Rev. A 91, 032116 (2015)ADSCrossRefGoogle Scholar
  126. 126.
    Goggin, M.E., Almeida, M.P., Barbieri, M., Lanyon, B.P., O’Brien, J.L., White, A.G., Pryde, G.J.: Violation of the Leggett-Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. U.S.A. 108, 1256–61 (2011)ADSCrossRefGoogle Scholar
  127. 127.
    Williams, N.S., Jordan, A.N.: Weak values and the Leggett-Garg inequality in solid-state qubits. Phys. Rev. Lett. 100, 026804 (2008)ADSCrossRefGoogle Scholar
  128. 128.
    Hosten, O., Kwiat, P.: Observation of the spin hall effect of light via weak measurements. Science 319, 787–790 (2008)ADSCrossRefGoogle Scholar
  129. 129.
    Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009)ADSCrossRefGoogle Scholar
  130. 130.
    Ferrie, C., Combes, J.: Weak value amplification is suboptimal for estimation and detection. Phys. Rev. Lett. 112, 040406 (2014)ADSCrossRefGoogle Scholar
  131. 131.
    Knee, G.C., Combes, J., Ferrie, C., Gauger, E.M.: Weak-value amplification: state of play. Q. Measur. Q. Metrol. 3, 1–7 (2016)Google Scholar
  132. 132.
    Viza, G.I., Martínez-Rincón, J., Alves, G.B., Jordan, A.N., Howell, J.C.: Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A 92, 032127 (2015)ADSCrossRefGoogle Scholar
  133. 133.
    Zhu, X., Zhang, Y., Pang, S., Qiao, C., Liu, Q., Wu, S.: Quantum measurements with preselection and postselection. Phys. Rev. A 84, 052111 (2011)ADSCrossRefGoogle Scholar
  134. 134.
    Combes, J., Ferrie, C., Jiang, Z., Caves, C.M.: Quantum limits on postselected, probabilistic quantum metrology. Phys. Rev. A 89, 052117 (2014)ADSCrossRefGoogle Scholar
  135. 135.
    Jordan, A.N., Martínez-Rincón, J., Howell, J.C.: Technical advantages for weak-value amplification: when less is more. Phys. Rev. X 4, 011031 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsThe University of QueenslandQueenslandAustralia

Personalised recommendations