Hierarchical Clustering-Based Algorithms and In Silico Techniques for Phylogenetic Analysis of Rhizobia

  • Jyoti Lakhani
  • Ajay Khuteta
  • Anupama Choudhary
  • Dharmesh HarwaniEmail author
Part of the Soil Biology book series (SOILBIOL, volume 50)


There are several in silico methodologies and tools available to study evolutionary history of rhizobia. Previously, it was very difficult to study and predict evolutionary relationships between two microbial species in a laboratory using wet lab experiments due to the lack of fossil evidences of microorganisms. In previous two decades, emergence and development of bioinformatics tools resolved this problem by replacing wet experiments by in silico experiments. The present communication is a survey on phylogenetic tools and algorithms used by researchers to study phylogeny of rhizobia. Phylogenetic analysis may be considered to be a highly reliable and important bioinformatics tool in biological sciences. The importance of phylogenetic analysis lies in its simple and easy handling of data. The varied applications of phylogenetics in different fields of biology make this analysis an unconditional necessity. This chapter is a survey on the molecular phylogenetic analysis of rhizobia with reference to the contemporary in silico methods used for rhizobia. Evidences and input parameters have also been discussed.


Rhizobia In silico Phylogenetic analysis Hierarchical clustering Evolution 


  1. Abdel-Aziz RA, Al-Barakah FN, Al-Asmary HM (2008) Genetic identification and symbiotic efficiency of Sinorhizobium meliloti indigenous to Saudi Arabian soils. Afr J Biotechnol 7:2803–2809Google Scholar
  2. Aliliche et al (2016) Molecular phylogenetic analysis of Rhizobium sullae isolated from Algerian Hedysarum flexuosum. Antonie van Leeuwenhoek 109:897–906CrossRefPubMedGoogle Scholar
  3. Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Tejerizo GT, Rogel MA, Mora J, Martínez-Romero E (2014) Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 14:6CrossRefPubMedPubMedCentralGoogle Scholar
  4. Araujo ASF, Lopes ACA, Gomes RLF, Beserra Junior REA, Antunes JEL, Lyra MCCP, Figueiredo MVB (2015) Diversity of native rhizobia-nodulating Phaseolus lunatus in Brazil. Legume Res 38(5):653–657Google Scholar
  5. Ba S, Willems A, Lajudie PD, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé JC, Gillis M, Boivin-Masson C, Lorquin J (2002) Symbiotic and taxonomic diversity of Rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25:130–145CrossRefPubMedGoogle Scholar
  6. Baginsky et al (2015) Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Arch Microbiol 197:419–429CrossRefPubMedGoogle Scholar
  7. Baraúna AC, Silva K, Pereira GMD, Kaminski PE, Perin L, Zilli JE (2014) Diversity and nitrogen fixation efficiency of rhizobia isolated from nodules of Centrolobium paraense. Pesq Agropec Bras 49:296–305CrossRefGoogle Scholar
  8. Berkum PV, Beyene D, Eardly BD (1996) Phylogenetic Relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Internationjaolu rnaolf systematibca cteriologjyan 46:240–244Google Scholar
  9. Blažinkov M, Sikora S, Uher D, Maćešić D, Redžepović S (2007) Genotypic characterisation of indigenous Rhizobium leguminosarum bv. viciae field population in Croatia. Agric Conspec Sci 72:153–158Google Scholar
  10. Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C (2005) Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Appl Environ Microbiol 71:8042–8048CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brechenmacher et al (2008) Transcription profiling of Soybean nodulation by Bradyrhizobium japonicum. Mol Plant Microbe Interact 21:631–645CrossRefPubMedGoogle Scholar
  12. Capoen W, Den Herder J, Rombauts S, Gussem JD, Keyser AD, Holsters M, Goormachtig S (2007) Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. Plant Physiol 144:1878–1889CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaphalkar A, Salunkhe N (2010) Phylogenetic analysis of nitrogen-fixing and quorum sensing bacteria. Int J Bioinf Res 2:17–32CrossRefGoogle Scholar
  14. Choi YJ, Yun HK (2016) Transcriptional profiles of Rhizobium vitis-inoculated and salicylic acid-treated ‘Tamnara’ grapevines based on microarray analysis. J Plant Biotechnol 43:37–48CrossRefGoogle Scholar
  15. Chriki-Adeeb R, Chriki A (2015) Bayesian phylogenetic analysis of rhizobia isolated from root-nodules of three Tunisian wild legume species of the genus Sulla. J Phylogen Evol Biol 3:149Google Scholar
  16. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  17. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. Atlas Protein Seq Struct 5:345–352Google Scholar
  18. Dourado AC, Alves PIL, Tenreiro T, Ferreira EM, Tenreiro R, Fareleira P, Crespo MTB (2009) Identification of Sinorhizobium (Ensifer) medicae based on a specific genomic sequence unveiled by M13-PCR fingerprinting. Int Microbiol 12:215–225PubMedGoogle Scholar
  19. Eardly BD, Nour SM, Berkum PV, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335CrossRefPubMedPubMedCentralGoogle Scholar
  20. Faisal T, Farooq J, Vessey K (2009) Genetic diversity of Bradyrhizobium japonicum within soybean growing regions of the north-eastern Great Plains of North America as determined by REP-PCR and ERIC-PCR profiling. Symbiosis 48:131–142CrossRefGoogle Scholar
  21. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  22. Felsenstein J (1989) PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  23. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284CrossRefPubMedGoogle Scholar
  24. Frédéric Ampe et al (2003) Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 4:R15CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174CrossRefPubMedGoogle Scholar
  26. Hassen et al (2014) Nodulation study and characterization of Rhizobial microsymbionts of forage and pasture legumes in South Africa. World J Agri Res 2(3):93–100CrossRefGoogle Scholar
  27. Jia et al (2015) Identification and classification of Rhizobia by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Proteomics Bioinf 8(6):98–107Google Scholar
  28. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York, pp 21–132Google Scholar
  29. Jurelevicius et al (2010) Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. J Microbiol Biotechnol 20(5):862–870CrossRefPubMedGoogle Scholar
  30. Kesari et al (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Hindawi Publishing Corporation. BioMed Res Int 2013:65198Google Scholar
  31. Khbaya et al (1998) Genetic diversity and phylogeny of Rhizobia that nodulate Acacia spp. in morocco assessed by analysis of rRNA genes. Appl Environ Microbiol 64:4912–4917PubMedPubMedCentralGoogle Scholar
  32. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  33. Knief et al (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koch M et al (2010) Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. MPMI 23:784–790CrossRefPubMedGoogle Scholar
  35. Korner H et al (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 792:1–34Google Scholar
  36. Kumar et al (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5(1):140133CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu et al (2012) Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla). N Z Plant Prot 65:192–196Google Scholar
  38. Lyra et al (2013) Phenotypic and molecular characteristics of rhizobia isolated from nodules of peanut (Arachis hypogaea L.) grown in Brazilian Spodosols. Afr J Biotechnol 12:2147–2156CrossRefGoogle Scholar
  39. Mathur M, Tuli R (1990) Cluster analysis of genes for nitrogen fixation from diazatrophs. J Genet 69:67–78CrossRefGoogle Scholar
  40. McGinn et al (2016) Trifolium species associate with a similar richness of soil-borne mutualists in their introduced and native ranges. J Biogeogr. doi: 10.1111/jbi.12690
  41. Mora et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol 80:5644–5654CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murtagh F (1984) Complexities of hierarchical clustering algorithms: the state of the art. Comput Stat Q 1:101–113Google Scholar
  43. Pinto et al (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864CrossRefGoogle Scholar
  44. Rashid et al (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109CrossRefPubMedGoogle Scholar
  45. Reeve et al (2013) Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1. Stand Genomic Sci 9:243–253CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rogel et al (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268CrossRefPubMedPubMedCentralGoogle Scholar
  47. Roy SS, Dasgupta R, Bagchi A (2014) A review on phylogenetic analysis: a journey through modern era. Comput Mol Biosci 4:39–45CrossRefGoogle Scholar
  48. Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095PubMedGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  50. Santamaría et al (2014) Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol 80:446–454CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schuller et al (2012) Computer-based annotation of putative AraC/XylS-family transcription factors of known structure but unknown function. J Biomed Biotechnol 2012:103132CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sessitsch et al (1997) Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Australian soil. Mol Ecol 6:601–608CrossRefGoogle Scholar
  53. Sober E (1983) Parsimony in systematics: philosophical issues. Annu Rev Ecol Syst 14:335–357CrossRefGoogle Scholar
  54. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  55. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  56. Tan Z-Y et al (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related Rhizobia. Int J Syst Bacteriol 47:874–879CrossRefPubMedGoogle Scholar
  57. Taulé et al (2012) New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol 78(6):1692–1700CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci Am Math Soc 17:57–86Google Scholar
  59. Tian CF, Zhou YJ, Zhang YM et al (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA 109:8629–8634CrossRefPubMedPubMedCentralGoogle Scholar
  60. Velázquez et al (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. MPMI 18:1325–1332CrossRefPubMedGoogle Scholar
  61. Vercruysse et al (2011) Stress response regulators identified through genome-wide transcriptome analysis of the (p) ppGpp-dependent response in Rhizobium etli. Genome Biol 12:R17CrossRefPubMedPubMedCentralGoogle Scholar
  62. Willems, Collins (1993) Phylogenetic analysis of Rhizobia and Agrobacteria based on 16s rRNA gene sequences. Internatiojnoaulr naolf systematbiacc teriologya 43:305–313Google Scholar
  63. Yang G-P et al (1999) Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with a,b-unsaturated N-acyl substitutions. Mol Microbiol 34:227–237CrossRefPubMedGoogle Scholar
  64. Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 8:133Google Scholar
  65. Youseif et al (2014) Phenotypic characteristics and genetic diversity of rhizobia nodulating soybean in Egyptian soils. Eur J Soil Biol 60:34–43CrossRefGoogle Scholar
  66. Zhang J et al (2007) Monophyletic clustering and characterization of protein families. J Integr Bioinf 4:67Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jyoti Lakhani
    • 1
    • 2
  • Ajay Khuteta
    • 1
  • Anupama Choudhary
    • 3
  • Dharmesh Harwani
    • 4
    Email author
  1. 1.Department of Computer SciencePoornima UniversityJaipurIndia
  2. 2.Department of Computer ScienceMaharaja Ganga Singh UniversityBikanerIndia
  3. 3.Department of Computer ScienceKeen CollegeBikanerIndia
  4. 4.Department of MicrobiologyMaharaja Ganga Singh UniversityBikanerIndia

Personalised recommendations