Advertisement

Strong-Field-Assisted Measurement of Near-Fields and Coherent Control of Photoemission at Nanometric Metal Tips

  • M. Förster
  • T. Paschen
  • S. Thomas
  • M. Krüger
  • P. Hommelhoff
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL)

Abstract

Metal nanotips are an ideal testbed for ultrafast and strong-field physics at solids due to the superb control they allow over their very apex and the near-field at this apex that enhances an incident laser field. Particular attention has recently been devoted to the study of laser-induced electron emission from nanotips, where an enhanced fundamental understanding contributes to the implementation of nanotips as a source of femtosecond electron pulses. In this chapter we present photoemission studies at nanotips illuminated with femtosecond lasers. We demonstrate a new technique to measure the strength of near-fields at nanostructures by using our knowledge of the occurring strong-field physics. Electrons rescattering with the surface of the nanotip after emission give access to the prevalent near-field intensity on the nanometer scale. Our measurements fit well with independent simulations of Maxwell’s equations. In the second part we show that by employing a synthesized light field of a fundamental and a second harmonic laser pulse we achieve almost perfect coherent control of the photoemission process. We demonstrate that we can interpret our findings in terms of interfering quantum pathways.

References

  1. 1.
    E.W. Müller, K. Bahadur, Phys. Rev. 102, 624–631 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    E.W. Müller, J.A. Panitz, S.B. McLane, Rev. Sci. Instrum. 39, 83–86 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    D. Ehberger, J. Hammer, M. Eisele, M. Krüger, J. Noe, A. Högele, P. Hommelhoff, Phys. Rev. Lett. 114, 227601 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    J.C.H. Spence, High-Resolution Electron Microscopy, 4th edn. (Oxford University Press, New York, 2013)CrossRefGoogle Scholar
  5. 5.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Appl. Phys. Lett. 40, 178–180 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930–933 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651–653 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Krüger, M. Schenk, J. Breuer, M. Förster, J. Hammer, J. Hoffrogge, S. Thomas, P. Hommelhoff, Progress in Ultrafast Intense Laser Science IX, Chapter 12, ed. K. Yamanouchi, K. Midorikawa (Springer, Heidelberg, 2013)Google Scholar
  10. 10.
    M. Krüger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011)CrossRefGoogle Scholar
  11. 11.
    B. Piglosiewicz, S. Schmidt, D.J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, C. Lienau, Nat. Photonics 8, 37–42 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. B 86, 035402 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M. Krüger, M. Schenk, P. Hommelhoff, G. Wachter, C. Lemell, J. Burgdörfer, New J. Phys. 14, 085019 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Paarmann, M. Gulde, M. Müller, S. Schäfer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, R. Ernstdorfer, J. Appl. Phys 112, 113109 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Hoffrogge, J.-P. Stein, M. Krüger, M. Förster, J. Hammer, D. Ehberger, P. Baum, P. Hommelhoff, J. Appl. Phys. 115, 094506 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M. Gulde, S. Schweda, G. Storeck, M. Maiti, H.K. Yu, A.M. Wodtke, S. Schäfer, C. Ropers, Science 345, 200–204 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    L. Piazza, T.T.A. Lummen, E. Quiñonez, Y. Murooka, B.W. Reed, B. Barwick, F. Carbone, Nat. Commun. 6, 6407 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Vogelsang, J. Robin, B.J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Groß, C. Lienau, Nano Lett. 15, 4685–4691 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M. Müller, V. Kravtsov, A. Paarmann, M. Raschke, R. Ernstdorfer, Nanofocused plasmon-driven sub-10 fs electron point source. ACS Photonics 3(4), 611–619 (2016)Google Scholar
  21. 21.
    H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Grebner, M. Hengsberger, J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. Kealhofer, S.M. Foreman, S. Gerlich, M.A. Kasevich, Phys. Rev. B 86, 035405 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Klein, G. Schwitzgebel, Rev. Sci. Instrum. 68, 3099 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    M. Eisele, M. Krüger, M. Schenk, A. Ziegler, P. Hommelhoff, Rev. Sci. Instrum. 82, 026101 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Krüger, Attosecond Physics in Strong-Field Photoemission from Metal Nanotips (Dissertation, München, 2013)Google Scholar
  26. 26.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006)CrossRefGoogle Scholar
  27. 27.
    A. Hartschuh, Angew. Chem. Int. Ed. 47, 8178–8191 (2008)CrossRefGoogle Scholar
  28. 28.
    M. Busuladžić, A. Gazibegović-Busuladžić, D.B. Milošević, Laser Phys. 16, 289–293 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    S. Thomas, M. Krüger, M. Förster, M. Schenk, P. Hommelhoff, Nano Lett. 13, 4790 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    M. Krüger, S. Thomas, M. Förster, P. Hommelhoff, J. Phys. B 47, 124022 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    D. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 85th edn. (CRC Press, Boca Raton, 2004)Google Scholar
  32. 32.
    J. Zuloaga, E. Prodan, P. Nordlander, ACS Nano 4, 5269–5276 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Nelayah, M. Kociak, O. Stéphan, F. Javier, García de Abajo, M. Tenće, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzán, C. Colliex, Nat. Phys. 3, 348–353 (2007)Google Scholar
  34. 34.
    U. Hohenester, H. Ditlbacher, J.R. Krenn, Phys. Rev. Lett. 103, 106801 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    S. Thomas, G. Wachter, C. Lemell, J. Burgdörfer, P. Hommelhoff, New J. Phys. 17, 063010 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    P. Brumer, M. Shapiro, Chem. Phys. Lett. 126, 541–546 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    L. Zhu, V. Kleiman, X. Li, S.P. Lu, K. Trentelman, R.J. Gordon, Science 270, 77–80 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    H.G. Muller, P.H. Bucksbaum, D.W. Schumacher, A. Zavriyev, J. Phys. B 23, 2761 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    D.W. Schumacher, F. Weihe, H.G. Muller, P.H. Bucksbaum, Phys. Rev. Lett. 73, 1344 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    F. Ehlotzky, Phys. Rep. 345, 175 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M.Yu. Ivanov, D.M. Villeneuve, P.B. Corkum, Nat. Phys. 2, 781–786 (2006)Google Scholar
  42. 42.
    M. Förster, T. Paschen, M. Krüger, C. Lemell, G. Wachter, F. Libisch, T. Madlener, J. Burgdörfer, P. Hommelhoff, Two-color coherent control of femtosecond above-threshold photoemission from a tungsten nanotip. Phys. Rev. Lett. 117, 217601 (2016)Google Scholar
  43. 43.
    H. Petek, S. Ogawa, Prog. Surf. Sci. 56, 239–310 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    B. Förg, J. Schötz, F. Süßmann, M. Förster, M. Krüger, B.-N. Ahn, K. Wintersperger, S. Zherebtsov, A. Guggenmos, V. Pervak, A. Kessel, S. Trushin, A. Azzeer, M. Stockman, D.-E. Kim, F. Krausz, P. Hommelhoff, M. Kling, Attosecond nanoscale near-field sampling. Nat. Commun. 7, 11717 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Förster
    • 1
  • T. Paschen
    • 1
  • S. Thomas
    • 1
  • M. Krüger
    • 2
  • P. Hommelhoff
    • 1
  1. 1.Lehrstuhl für LaserphysikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations