Molecules in Bichromatic Circularly Polarized Laser Pulses: Electron Recollision and Harmonic Generation

  • André D. BandraukEmail author
  • François Mauger
  • Kai-Jun Yuan
Part of the Springer Series in Chemical Physics book series (CHEMICAL)


High-order harmonic generation (HHG), the highly nonlinear nonperturbative response of atoms and/or molecules to ultrafast intense laser pulses of femtosecond (\(1\text { fs}=10^{-15}\) s) duration, can be modeled as a recollision process after tunneling ionization of an electron in linear polarization. In general, recollision is suppressed at high intensities with monochromatic circularly polarized pulses. Combinations of bicircular pulses with frequencies \(\omega _1/\omega _2=n_1/n_2\) where \(n_1\) and \(n_2\) are integers, induce recollisions and HHG, seen in a rotating frame Hamiltonian. Molecules are preferred systems for circularly polarized HHG due to lower rotational symmetry as compared to infinite symmetry in atoms where emission selection rules dominate. We simulated HHG spectra from numerical solutions of time-dependent Schrödinger equations for linear and cyclic one and two electron molecular models by intense circularly polarized pulses with both co-rotating and counter-rotating components. Simulations show that the bicircular HHG spectrum is universal, with a cut-off at \(N_m=(I_p+3.17U_p)/\hbar \omega \), where \(I_p\) is the molecular ionization potential and the ponderomotive energy \(U_p=e^2E^2/4m_e\omega ^2\) for maximum electric field amplitude E. The rotating frame Hamiltonian model predicts the recollision (ponderomotive) frequency \(\omega =(\omega _1+\omega _2)/2\). The simulated HHG spectra confirm the recollision model in a rotating frame at frequency \(\bar{\omega }=(\omega _2-\omega _1)/2\). The results show that the circularly polarized HHG with definite helicity occurs efficiently when the total electric field E(t) rotational symmetry \(C_n\) of bicircular pulses is the same as the symmetry of the molecule. A mismatch of symmetry produces a random HHG spectrum, thus confirming the role of field-molecular symmetry in molecular HHG with circularly polarized pulses.


Circularly-polarized Pulses Electron Recollision Molecular HHG Recollision Model Tunnelling Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank RQCHP and Compute Canada for access to massively parallel computer clusters for solving molecular TDSEs. Illuminating discussions with F. Légaré, T. Uzer, A.F. Starace are also acknowledged.


  1. 1.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    K.J. Schafer, B. Yang, L.F. DiMauro, K.C. Kulander, Phys. Rev. Lett. 70, 1599 (1993)Google Scholar
  3. 3.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Chang, P. Corkum, J. Opt. Soc. Am. B 27, B9 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    K.J. LaGattuta, J.S. Cohen, J. Phys. B 31, 5281 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    R. Shakeshaft, R.M. Potvliege, M. Dörr, W.E. Cooke, Phys. Rev. A 42, 1656 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    P.B. Corkum, N.H. Burnett, F. Brunel, Phys. Rev. Lett. 62, 1259 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    K.J. Yuan, A.D. Bandrauk, J. Phys. B 45, 074001 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. A 83, 063422 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Phys. Rev. Lett. 115, 133203 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    H. Niikura, F. Légaré, R. Hasbani, A.D. Bandrauk, M.Y. Ivanov, D.M. Villeneuve, P.B. Corkum, Nature 417, 917 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    F.A. Weihe, S.K. Dutta, G. Korn, D. Du, P.H. Bucksbaum, P.L. Shkolnikov, Phys. Rev. A 51, R3433 (1995)Google Scholar
  14. 14.
    D. Farrelly, T. Uzer, Phys. Rev. Lett. 74, 1720 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    W.R. Salzman, Chem. Phys. Lett. 25, 302 (1974)Google Scholar
  16. 16.
    F. Mauger, C. Chandre, T. Uzer, Phys. Rev. Lett. 105, 083002 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Ivanov, P.B. Corkum, T. Zuo, A.D. Bandrauk, Phys. Rev. Lett. 74, 2933 (1995)Google Scholar
  18. 18.
    T. Zuo, A.D. Bandrauk, J. Nonlin. Opt. Phys. Mater. 04, 533 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    A.D. Bandrauk, H.Z. Lu, Phys. Rev. A 68, 043408 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    S. Long, W. Becker, J.K. McIver, Phys. Rev. A 52, 2262 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    D.B. Milošević, W. Becker, J. Mod. Opt. 52, 233 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, O. Cohen, Nat. Photonics 8, 543 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Fan, P. Grychtol, R. Knut, C. Hernández-García, D.D. Hickstein, D. Zusin, C. Gentry, F.J. Dollar, C.A. Mancuso, C.W. Hogle, O. Kfir, D. Legut, K. Carva, J.L. Ellis, K.M. Dorney, C. Chen, O.G. Shpyrko, E.E. Fullerton, O. Cohen, P.M. Oppeneer, D.B. Miloševic, A. Becker, A.A. Jaron-Becker, T. Popmintchev, M.M. Murnane, H.C. Kapteyn, Proc. Nat. Acad. Sci. U.S.A. 112, 14206 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    R. Cireasa, A.E. Boguslavskiy, B. Pons, M.C.H. Wong, D. Descamps, S. Petit, H. Ruf, N. Thiré, A. Ferré, J. Suarez, J. Higuet, B.E. Schmidt, A.F. Alharbi, F. Légar, V. Blanchet, B. Fabre, S. Patchkovskii, O. Smirnova, Y. Mairesse, V.R. Bhardwaj, Nat. Phys. 11, 654 (2015)Google Scholar
  26. 26.
    O. Smirnova, S. Patchkovskii, Y. Mairesse, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Phys. Rev. Lett. 102, 063601 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, T.F. George, Nat. Phys. 5, 499 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Eisebitt, M. Lörgen, W. Eberhardt, J. Luüning, J. Stöhr, C.T. Rettner, O. Hellwig, E.E. Fullerton, G. Denbeaux, Phys. Rev. B 68, 104419 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    D. Baykusheva, M.S. Ahsan, N. Lin, H.J. Wörner, Phys. Rev. Lett. 116, 123001 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    K. Lin, X. Gong, Q. Song, Q. Ji, W. Zhang, J. Ma, P. Lu, H. Pan, J. Ding, H. Zeng, J. Wu, J. Phys, B 49, 025603 (2016)Google Scholar
  31. 31.
    I. Barth, J. Manz, Y. Shigeta, K. Yagi, J. Am. Chem. Soc. 128, 7043 (2006)CrossRefGoogle Scholar
  32. 32.
    I. Barth, J. Manz, Phys. Rev. A 75, 012510 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. A 88, 013417 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. A 92, 063401 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    A. D. Bandrauk, K. J. Yuan, From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, ed. by S.A. Malinovskaya, I. Novikova (World Scientific, Singapore, 2015) pp. 207–220Google Scholar
  36. 36.
    R. Fischer, M. Lein, C.H. Keitel, Phys. Rev. Lett. 97, 143901 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    F. Mauger, A.D. Bandrauk, A. Kamor, T. Uzer, C. Chandre, J. Phys. B 47, 041001 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz, Phys. Rev. Lett. 114, 063003 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1994)Google Scholar
  40. 40.
    P. Dietrich, N.H. Burnett, M. Ivanov, P.B. Corkum, Phys. Rev. A 50, R3585 (1994)Google Scholar
  41. 41.
    X.M. Tong, S.I. Chu, Phys. Rev. A 58, R2656 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    C. Ruiz, D.J. Hoffmann, R. Torres, L.E. Chipperfield, J.P. Marangos, New J. Phys. 11, 113045 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Chang, Phys. Rev. A 76, 051403 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    M. Chini, K. Zhao, Z. Chang, Nat. Photonics 8, 178 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    H. Eichmann, A. Egbert, S. Nolte, C. Momma, B. Wellegehausen, W. Becker, S. Long, J.K. McIver, Phys. Rev. A 5(1), R3414 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    K.J. Yuan, H. Lu, A.D. Bandrauk, Phys. Rev. A 92, 023415 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    X. Zhu, X. Liu, Y. Li, M. Qin, Q. Zhang, P. Lan, P. Lu, Phys. Rev. A 91, 043418 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    X. Zhou, R. Lock, N. Wagner, W. Li, H.C. Kapteyn, M.M. Murnane, Phys. Rev. Lett. 102, 073902 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    J. Levesque, Y. Mairesse, N.T. Dudovich, H. Pépin, J.-C. Kieffer, P.B. Corkum, D.M. Villeneuve, Phys. Rev. Lett. 99, 243001 (2007)Google Scholar
  50. 50.
    L. Medišauskas, J. Wragg, H. van der Hart, M.Y. Ivanov, Phys. Rev. Lett. 115, 153001 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    D.B. Milošević, Phys. Rev. A 92, 043827 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    M.V. Frolov, N.L. Manakov, T.S. Sarantseva, A.F. Starace, Phys. Rev. A 86, 063406 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    T. Herath, L. Yan, S.K. Lee, W. Li, Phys. Rev. Lett. 109, 043004 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, M. Kitzler, Phys. Rev. Lett. 101, 033901 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    A.D. Bandrauk, S. Chelkowski, S. Goudreau, J. Mod. Opt. 52, 411 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    E.V. van der Zwan, M. Lein, Phys. Rev. A 82, 033405 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    A. D. Bandrauk, F. Mauger, K.J. Yuan, J. Phys. B 49, 23LT01 (2016)Google Scholar
  58. 58.
    F. Mauger, A.D. Bandrauk, T. Uzer, J. Phys. B 49, 10LT01 (2016)Google Scholar
  59. 59.
    S. Watanabe, K. Kondo, Y. Nabekawa, A. Sagisaka, Y. Kobayashi, Phys. Rev. Lett. 73, 2692 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    P. Wei, J. Miao, Z. Zeng, C. Li, X. Ge, R. Li, Z. Xu, Phys. Rev. Lett. 110, 233903 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    Z. Chang, Phys. Rev. A 70, 043802 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    E. Cunningham, Z. Chang, IEEE, J. Sel. Top. Quant. Electron. 21, 8700806 (2015)Google Scholar
  63. 63.
    J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Manakov, A.V. Meremianin, A.F. Starace, Phys. Rev. Lett. 115, 113004 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    K.J. Yuan, A.D. Bandrauk, Phys. Rev. A 91, 042509 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • André D. Bandrauk
    • 1
    Email author
  • François Mauger
    • 2
  • Kai-Jun Yuan
    • 1
  1. 1.Computational Chemistry & Molecular Photonics, Laboratoire de Chimie Théorique, Faculté des SciencesUniversité de SherbrookeSherbrookeCanada
  2. 2.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations