Advertisement

Twistor Theory as an Approach to Fundamental Physics

  • Roger PenroseEmail author
Chapter

Abstract

The original motivations underlying the introduction of twistor theory are described, demanding a (3+1)-dimensional space-time theory dependent upon complex analysis and geometry. Space-time points are relegated to a secondary role, light rays, with a twisting aspect to them, being taken as more fundamental. The twistor treatment of wavefunctions for massless fields leads to a representation in terms of holomorphic sheaf cohomology. This, in turn, leads to a description of anti-self-dual (left-handed) gravitational (and Yang-mills) feeds. Failed attempts to remove this anti-self-dual restriction (the googly problem) led to a 40-year blockage to the development of twistor theory as a possible overall approach to fundamental physics. In recent years, a hopeful approach to deal with this problem—palatial twistor theory—has arisen, but the detailed development of these ideas has so far proved technically difficult.

Notes

Acknowledgements

I’m grateful for Joseph Kouneiher, for his comments, suggestions throughout the process of writing and the preparation of this paper.

References

  1. 1.
    R. Penrose, On the origins of twistor theory, in Gravitation and Geometry: A Volume in Honour of I. Robinson. ed. by W. Rindler, A. Trautman (Bibliopolis, Naples, 1987)Google Scholar
  2. 2.
    L.J. Mason, N.M.J. Woodhouse, Integrability, Self-Duality, and Twistor Theory (Oxford University Press, Oxford, 1996)Google Scholar
  3. 3.
    S.A. Huggett, L.J. Mason, K.P. Tod, S.T. Tsou, N.M.J. Woodhouse, The Geometric Universe: Science, Geometry, and the Work of Roger Penrose (Oxford University Press, Oxford, 1998)zbMATHGoogle Scholar
  4. 4.
    R. Penrose, Twistor algebra. J. Math. Phys. 8(2), 345–66 (1967)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Penrose, M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space-time. Phys. Repts. 6C, 241–315 (1972)Google Scholar
  6. 6.
    A.P. Hodges, S. Huggett, Twistor diagrams. Surv. High Energy Phys. 1, 333–53 (1980)CrossRefGoogle Scholar
  7. 7.
    A.P. Hodges, Twistor diagrams. Physica 114A, 157–75 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.P. Hodges, A twistor approach to the regularization of divergences. Proc. Roy. Soc. Lond. A397, 341–74 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Parke, T. Taylor, Amplitude for \(n-\)gluon scatterings. Phys. Rev. Lett. 56, 2459 (1986)CrossRefGoogle Scholar
  10. 10.
    V. Nair, A current algebra for some gauge theory amplitudes. Phys. Lett. B 214, 215 (1988)CrossRefGoogle Scholar
  11. 11.
    W.T. Shaw, L.P. Hughston, Twistors and strings, in Twistors in Mathematics and Physics, LMS Lect. Note Ser. 156, ed. by T.N. Bailey, R.J. Baston (Cambridge University Press, Cambridge, 1990)Google Scholar
  12. 12.
    E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189–258 (2004). arXiv:hep-th/0312171v2MathSciNetCrossRefGoogle Scholar
  13. 13.
    A.P. Hodges, Twistor Diagrams for All Tree Amplitudes in Gauge Theory: A Helicity-independent Formalism, 2006. arXiv:hep-th/0512336v2
  14. 14.
    A.P. Hodges, Scattering Amplitudes for Eight Gauge Fields (2006). arXiv:hep-th/0603101v1
  15. 15.
    A. Hodges, in Eliminating Spurious Poles from Gauge-theoretic Amplitudes (2009). arXiv:0905.1473v1
  16. 16.
    A.P. Hodges, Nat. Phys. 9, 205–206 (2013).  https://doi.org/10.1038/nphys2597CrossRefGoogle Scholar
  17. 17.
    L.J. Mason, D. Skinner, Scattering Amplitudes and BCFW Recursion in Twistor Space (2009). arXiv:0903.2083v3
  18. 18.
    L. Mason, D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians (2009). arXiv:0909.0250v2 [hep-th]MathSciNetCrossRefGoogle Scholar
  19. 19.
    N. Arkani-Hamed, F. Cachazo, C. Cheung, J. Kaplan, The S-matrix in twistor space. J. High Energy Phys. 1003, 020 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    N. Arkani-Hamed, A. Hodges, J. Trnka, Positive Amplitudes in the Amplituhedron (2014). qrXiv:1412.8478v1 [hep-th]Google Scholar
  21. 21.
    R. Penrose, Non-linear gravitons and curved twistor theory. Gen. Rel. Grav. 7, 31–52 (1976)CrossRefGoogle Scholar
  22. 22.
    R.S. Ward, Self-dual space-times with cosmological constant. Comm. Math. Phys. 78, 1–17 (1980)MathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Penrose, Palatial twistor theory and the twistor googly problem; in theme issue ‘New geometric concepts in the foundations of physics’. Phil. Trans. R. Soc. (Lond.) A 373, 20140237 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Penrose, Towards an objective physics of bell non-locality: palatial twistor theory, in Quantum Nonlocality and Reality ed. by M. Bell, S. Gao, Core - History, Philosophy and Foundations of Physics, Chinese Academy of Sciences, Beijing. (Cambridge University Press, Cambridge, 2016)Google Scholar
  25. 25.
    B. Greene, The Elegant Universe; Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory (Jonathan Cape, Random House, London, 1999)zbMATHGoogle Scholar
  26. 26.
    R. Penrose, The apparent shape of a relativistically moving sphere. Proc. Camb. Phil. Soc. 55, 137–9 (1959)MathSciNetCrossRefGoogle Scholar
  27. 27.
    É. Cartan, The Theory of Spinors (Hermann, Paris, 1966)zbMATHGoogle Scholar
  28. 28.
    B.L. van der Waerden, Spinoranalyse. Nachr. Akad. Wiss. Götting. Math.-Physik Kl, 100–109 (1929)Google Scholar
  29. 29.
    R. Penrose, A spinor approach to general relativity. Ann. Phys. (New York) 10, 171–201 (1960)MathSciNetCrossRefGoogle Scholar
  30. 30.
    W.T. Payne, Elementary spinor theory. Am. J. Phys. 20, 253–62 (1952)MathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Penrose, W. Rindler, Spinors and Space-Time, vol. 1: Two-Spinor Calculus and Relativistic Fields (Cambridge University Press, Cambridge, 1984)Google Scholar
  32. 32.
    L. Witten, Invariants of general relativity and the classification of spaces. Phys. Rev. 113, 357–62 (1959)MathSciNetCrossRefGoogle Scholar
  33. 33.
    P.A.M. Dirac, Relativistic wave equations. Proc. Roy. Soc. (Lond.) A155, 447–59 (1936)CrossRefGoogle Scholar
  34. 34.
    E.M. Corson, Introduction to Tensors, Spinors and Relativistic Wave Equations (Blackie, Glasgow, 1953)Google Scholar
  35. 35.
    R. Penrose, Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. Roy. Soc. Lond. A284, 159–203 (1965)MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. Penrose, Null hypersurface initial data for classical fields of arbitrary spin and for general relativity. Gen. Rel. Grav. 12, 225–264 (1980)MathSciNetCrossRefGoogle Scholar
  37. 37.
    R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically (1963)Google Scholar
  38. 38.
    R.H. Boyer, R.W. Lindquist, Maximal analytic extension of the Kerr metric. J. Math. Phys. 8, 265–281 (1967)MathSciNetCrossRefGoogle Scholar
  39. 39.
    E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, Metric of a rotating charged mass. J. Math. Phys. 6, 918–9 (1965)MathSciNetCrossRefGoogle Scholar
  40. 40.
    I. Robinson, A. Trautman, Some spherical gravitational waves in general relativity. Proc. Roy. Soc. (Lond.) A265, 463–73 (1962)MathSciNetCrossRefGoogle Scholar
  41. 41.
    R. Penrose, W. Rindler, Spinors and Space-Time, vol. 2: Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge, 1986)Google Scholar
  42. 42.
    R. Penrose, Twistor quantization and curved space-time. Int. J. Theor. Phys. 1, 61–99 (1968)CrossRefGoogle Scholar
  43. 43.
    P.A.M. Dirac, The Principles of Quantum Mechanics, 3rd edn. (Clarendon Press, Oxford, 1947)zbMATHGoogle Scholar
  44. 44.
    R. Penrose, Solutions of the zero rest-mass equations. J. Math. Phys. 10, 38–9 (1969)CrossRefGoogle Scholar
  45. 45.
    L.P. Hughston, Twistors and Particles, Lecture Notes in Physics No. 97 (Springer, Berlin, 1979)Google Scholar
  46. 46.
    E.T. Whittaker, On the partial differential equations of mathematical physics. Math. Ann. 57, 333–55 (1903)MathSciNetCrossRefGoogle Scholar
  47. 47.
    H. Bateman, The solution of partial differential equations by means of definite integrals. Proc. Lond. Math. Soc. 2(1), 451–8 (1904)MathSciNetCrossRefGoogle Scholar
  48. 48.
    H. Bateman, Partial Differential Equations of Mathematical Physics (Dover, New York, 1944)zbMATHGoogle Scholar
  49. 49.
    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That, 5th edn. (Princeton University Press, Princeton, 2000)zbMATHGoogle Scholar
  50. 50.
    R. Penrose, On the cohomology of impossible figures [La cohomologie des figures impossibles]. Struct. Topol. [Topologie structurale] 17, 11–16 (1991)Google Scholar
  51. 51.
    R.C. Gunning, R. Rossi, Analytic Functons of Several Complex Variables (Prentice-Hall, Englewood Cliffs, 1965)Google Scholar
  52. 52.
    R.S. Ward, On self-dual gauge fields. Phys. Lett. 61A, 81–2 (1977)MathSciNetCrossRefGoogle Scholar
  53. 53.
    K. Kodaira, On stability of compact submanifolds of complex manifolds. Am. J. Math. 85, 79–94 (1963)MathSciNetCrossRefGoogle Scholar
  54. 54.
    K. Kodaira, D.C. Spencer, On deformations of complex analytic structures I, II. Ann. Math. 67(328–401), 403–466 (1958)MathSciNetCrossRefGoogle Scholar
  55. 55.
    E.T. Newman, Heaven and its properties. Gen. Rel. Grav. 7, 107–11 (1976)MathSciNetCrossRefGoogle Scholar
  56. 56.
    E.T. Newman, Deformed twistor space and H-space, in Complex Manifold Techniques in Theoretical Physics, ed. by D.E. Lerner, P.D. Sommers (Pitman, San Francisco, 1979) pp. 154–165Google Scholar
  57. 57.
    R. Penrose, A new angle on the googly graviton, in Further Advances in Twistor Theory, vol. III: Curved Twistor Spaces Chapman & Hall/CRC Research Notes in Mathematics 424, ed. by L.J. Mason, L.P. Hughston, P.Z. Kobak, K. Pulverer (Chapman & Hall/CRC, London, 2001). pp. 264–269. ISBN 1-58488-047-3Google Scholar
  58. 58.
    C.R. LeBrun, Ambi-twistors and Einstein’s equations. Class. Quantum Grav. 2, 555–63 (1985)MathSciNetCrossRefGoogle Scholar
  59. 59.
    C.R. LeBrun, Twistors, ambitwistors, and conformal gravity, in Twistors in Mathematical Physics, LMS Lec. note ser. 156, ed. by T.N. Bailey, R.J. Baston (Cambridge University Press, Cambridge, 1990)Google Scholar
  60. 60.
    R. Geroch, Domain of dependence. J. Math. Phys. 11, 437 (1970)MathSciNetCrossRefGoogle Scholar
  61. 61.
    R. Penrose, Twistors and particles: an outline, in Quantum Theory and the Structures of Time and Space, ed. by L. Castell, M. Drieschner, C.F. von Weizsäcker (Carl Hanser Verlag, Munich, 1975)Google Scholar
  62. 62.
    Z. Perjés, Introduction to twistor particle theory, in Twistor Geometry and Non-Linear Systems, ed. by H.D. Doebner, T.D. Palev (Springer, Berlin, 1982) pp. 53–72CrossRefGoogle Scholar
  63. 63.
    Z. Perjés, G.A.J. Sparling, The twistor structure of hadrons, in Advances in Twistor Theory, ed. by L.P. Hughston, R.S. Ward (Pitman, San Francisco, 1979)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical InstituteOxfordUK

Personalised recommendations